IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v29y2023i4d10.1007_s10732-023-09518-7.html
   My bibliography  Save this article

Solving travelling thief problems using coordination based methods

Author

Listed:
  • Majid Namazi

    (Griffith University)

  • M. A. Hakim Newton

    (Griffith University
    The University of Newcastle)

  • Conrad Sanderson

    (Griffith University
    Data61, CSIRO)

  • Abdul Sattar

    (Griffith University)

Abstract

A travelling thief problem (TTP) is a proxy to real-life problems such as postal collection. TTP comprises an entanglement of a travelling salesman problem (TSP) and a knapsack problem (KP) since items of KP are scattered over cities of TSP, and a thief has to visit cities to collect items. In TTP, city selection and item selection decisions need close coordination since the thief’s travelling speed depends on the knapsack’s weight and the order of visiting cities affects the order of item collection. Existing TTP solvers deal with city selection and item selection separately, keeping decisions for one type unchanged while dealing with the other type. This separation essentially means very poor coordination between two types of decision. In this paper, we first show that a simple local search based coordination approach does not work in TTP. Then, to address the aforementioned problems, we propose a human designed coordination heuristic that makes changes to collection plans during exploration of cyclic tours. We further propose another human designed coordination heuristic that explicitly exploits the cyclic tours in item selections during collection plan exploration. Lastly, we propose a machine learning based coordination heuristic that captures characteristics of the two human designed coordination heuristics. Our proposed coordination based approaches help our TTP solver significantly outperform existing state-of-the-art TTP solvers on a set of benchmark problems. Our solver is named Cooperation Coordination (CoCo) and its source code is available from https://github.com/majid75/CoCo .

Suggested Citation

  • Majid Namazi & M. A. Hakim Newton & Conrad Sanderson & Abdul Sattar, 2023. "Solving travelling thief problems using coordination based methods," Journal of Heuristics, Springer, vol. 29(4), pages 487-544, December.
  • Handle: RePEc:spr:joheur:v:29:y:2023:i:4:d:10.1007_s10732-023-09518-7
    DOI: 10.1007/s10732-023-09518-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-023-09518-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-023-09518-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerhard Reinelt, 1991. "TSPLIB—A Traveling Salesman Problem Library," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 376-384, November.
    2. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    3. Polyakovskiy, S. & Neumann, F., 2017. "The Packing While Traveling Problem," European Journal of Operational Research, Elsevier, vol. 258(2), pages 424-439.
    4. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    5. Markus Wagner & Marius Lindauer & Mustafa Mısır & Samadhi Nallaperuma & Frank Hutter, 2018. "A case study of algorithm selection for the traveling thief problem," Journal of Heuristics, Springer, vol. 24(3), pages 295-320, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    2. A. S. Santos & A. M. Madureira & M. L. R. Varela, 2018. "The Influence of Problem Specific Neighborhood Structures in Metaheuristics Performance," Journal of Mathematics, Hindawi, vol. 2018, pages 1-14, July.
    3. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 2021. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 42(3), pages 499-523, October.
    4. Shaowen Lan & Yongliang Lu & Wenjuan Fan, 2025. "An adaptive variable neighborhood search for the traveling salesman problem with job-times," Journal of Heuristics, Springer, vol. 31(2), pages 1-65, June.
    5. Morteza Keshtkaran & Koorush Ziarati, 2016. "A novel GRASP solution approach for the Orienteering Problem," Journal of Heuristics, Springer, vol. 22(5), pages 699-726, October.
    6. Shahin Gelareh & Bernard Gendron & Saïd Hanafi & Rahimeh Neamatian Monemi & Raca Todosijević, 2020. "The selective traveling salesman problem with draft limits," Journal of Heuristics, Springer, vol. 26(3), pages 339-352, June.
    7. Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
    8. Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
    9. Xujin Chen & Xiaodong Hu & Xiaohua Jia & Zhongzheng Tang & Chenhao Wang & Ying Zhang, 0. "Algorithms for the metric ring star problem with fixed edge-cost ratio," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
    10. Chris Walshaw, 2002. "A Multilevel Approach to the Travelling Salesman Problem," Operations Research, INFORMS, vol. 50(5), pages 862-877, October.
    11. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    12. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    13. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    14. Marjan Marzban & Qian-Ping Gu & Xiaohua Jia, 2016. "New analysis and computational study for the planar connected dominating set problem," Journal of Combinatorial Optimization, Springer, vol. 32(1), pages 198-225, July.
    15. Ferrer, José M. & Martín-Campo, F. Javier & Ortuño, M. Teresa & Pedraza-Martínez, Alfonso J. & Tirado, Gregorio & Vitoriano, Begoña, 2018. "Multi-criteria optimization for last mile distribution of disaster relief aid: Test cases and applications," European Journal of Operational Research, Elsevier, vol. 269(2), pages 501-515.
    16. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    17. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    18. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    19. Lancia, Giuseppe & Vidoni, Paolo, 2020. "Finding the largest triangle in a graph in expected quadratic time," European Journal of Operational Research, Elsevier, vol. 286(2), pages 458-467.
    20. Oya Ekin Karaşan & A. Ridha Mahjoub & Onur Özkök & Hande Yaman, 2014. "Survivability in Hierarchical Telecommunications Networks Under Dual Homing," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:29:y:2023:i:4:d:10.1007_s10732-023-09518-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.