IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v23y2017i2d10.1007_s10732-017-9331-3.html
   My bibliography  Save this article

A heuristic approach for dividing graphs into bi-connected components with a size constraint

Author

Listed:
  • Raka Jovanovic

    (Hamad bin Khalifa University)

  • Tatsushi Nishi

    (Osaka University)

  • Stefan Voß

    (University of Hamburg
    Pontificia Universidad Católica de Valparaíso)

Abstract

In this paper we propose a new problem of finding the maximal bi-connected partitioning of a graph with a size constraint (MBCPG-SC). With the goal of finding approximate solutions for the MBCPG-SC, a heuristic method is developed based on the open ear decomposition of graphs. Its essential part is an adaptation of the breadth first search which makes it possible to grow bi-connected subgraphs. The proposed randomized algorithm consists of growing several subgraphs in parallel. The quality of solutions generated in this way is further improved using a local search which exploits neighboring relations between the subgraphs. In order to evaluate the performance of the method, an algorithm for generating pseudo-random unit disc graphs with known optimal solutions is created. Computational experiments have also been conducted on graphs representing electrical distribution systems for the real-world problem of dividing them into a system of fault tolerant interconnected microgrids. The experiments show that the proposed method frequently manages to find optimal solutions and has an average error of only a few percent to known optimal solutions. Further, it manages to find high quality approximate solutions for graphs having up to 10,000 nodes in reasonable time.

Suggested Citation

  • Raka Jovanovic & Tatsushi Nishi & Stefan Voß, 2017. "A heuristic approach for dividing graphs into bi-connected components with a size constraint," Journal of Heuristics, Springer, vol. 23(2), pages 111-136, June.
  • Handle: RePEc:spr:joheur:v:23:y:2017:i:2:d:10.1007_s10732-017-9331-3
    DOI: 10.1007/s10732-017-9331-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-017-9331-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-017-9331-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldschmidt, Olivier & Takvorian, Alexis & Yu, Gang, 1996. "On finding a biconnected spanning planar subgraph with applications to the facilities layout problem," European Journal of Operational Research, Elsevier, vol. 94(1), pages 97-105, October.
    2. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    3. Austin Buchanan & Je Sang Sung & Sergiy Butenko & Eduardo L. Pasiliao, 2015. "An Integer Programming Approach for Fault-Tolerant Connected Dominating Sets," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 178-188, February.
    4. Bazgan, Cristina & Tuza, Zsolt & Vanderpooten, Daniel, 2010. "Satisfactory graph partition, variants, and generalizations," European Journal of Operational Research, Elsevier, vol. 206(2), pages 271-280, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Yutong & Ong, Ghim Ping & Meng, Qiang, 2022. "Dynamic bicycle relocation problem with broken bicycles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    2. Gilberto F. Sousa Filho & Teobaldo L. Bulhões Júnior & Lucidio A. F. Cabral & Luiz Satoru Ochi & Fábio Protti, 2017. "New heuristics for the Bicluster Editing Problem," Annals of Operations Research, Springer, vol. 258(2), pages 781-814, November.
    3. Hosseinali Salemi & Austin Buchanan, 2022. "Solving the Distance-Based Critical Node Problem," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1309-1326, May.
    4. Liu, Ling & Martín Barragán, Belén & Prieto Fernández, Francisco Javier, 2016. "A Partial parametric path algorithm for multiclass classification," DES - Working Papers. Statistics and Econometrics. WS 22390, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Venkatesh Pandiri & Alok Singh, 2020. "Two multi-start heuristics for the k-traveling salesman problem," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1164-1204, December.
    6. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    7. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    8. Oleksandra Yezerska & Foad Mahdavi Pajouh & Alexander Veremyev & Sergiy Butenko, 2019. "Exact algorithms for the minimum s-club partitioning problem," Annals of Operations Research, Springer, vol. 276(1), pages 267-291, May.
    9. H-Y Lin & C-J Liao & C-T Tseng, 2011. "An application of variable neighbourhood search to hospital call scheduling of infant formula promotion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 949-959, June.
    10. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    11. Chandra Ade Irawan & Said Salhi & Zvi Drezner, 2016. "Hybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex $$p$$ p -centre problems," Journal of Heuristics, Springer, vol. 22(4), pages 507-537, August.
    12. Gläser, Sina & Stücken, Mareike, 2021. "Introduction of an underground waste container system–model and solution approaches," European Journal of Operational Research, Elsevier, vol. 295(2), pages 675-689.
    13. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    14. Abdel-Rahman Hedar & Wael Deabes & Hesham H. Amin & Majid Almaraashi & Masao Fukushima, 2022. "Global sensing search for nonlinear global optimization," Journal of Global Optimization, Springer, vol. 82(4), pages 753-802, April.
    15. Pierre Hansen & Nenad Mladenović & Raca Todosijević & Saïd Hanafi, 2017. "Variable neighborhood search: basics and variants," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 423-454, September.
    16. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    17. Dolinskaya, Irina & Shi, Zhenyu (Edwin) & Smilowitz, Karen, 2018. "Adaptive orienteering problem with stochastic travel times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 1-19.
    18. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    19. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    20. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:23:y:2017:i:2:d:10.1007_s10732-017-9331-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.