IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v92y2025i3d10.1007_s10898-025-01514-4.html
   My bibliography  Save this article

Out-of-sample estimation for a branch-and-bound algorithm with growing datasets

Author

Listed:
  • Susanne Sass

    (RWTH Aachen University)

  • Alexander Mitsos

    (RWTH Aachen University
    JARA-CSD
    Forschungszentrum Jülich GmbH)

  • Nikolay I. Nikolov

    (RWTH Aachen University
    Bulgarian Academy of Sciences)

  • Angelos Tsoukalas

    (RSM Erasmus University Rotterdam)

Abstract

In [Sass et al., Eur. J. Oper. Res., 316 (1): 36 – 45, 2024], we proposed a branch-and-bound (B&B) algorithm with growing datasets for the deterministic global optimization of parameter estimation problems based on large datasets. Therein, we start the B&B algorithm with a reduced dataset and augment it until reaching the full dataset upon convergence. However, convergence may be slowed down by a gap between the lower bounds of the reduced and the original problem, in particular for noisy measurement data. Thus, we propose the use of out-of-sample estimation for improving the lower bounds calculated with reduced datasets. Based on this, we extend the deterministic approach and propose two heuristic approaches. The computational performance of all approaches is compared with the standard B&B algorithm as a benchmark based on real-world estimation problems from process systems engineering, biochemistry, and machine learning covering datasets with and without measurement noise. Our results indicate that the heuristic approaches can improve the final lower bounds on the optimal objective value without cutting off the global solution. Aside from this, we prove that resampling can decrease the variance of the lower bounds calculated based on random initial datasets. In our case study, resampling hardly affects the performance of the approaches which indicates that the B&B algorithm with growing datasets does not suffer from large variances.

Suggested Citation

  • Susanne Sass & Alexander Mitsos & Nikolay I. Nikolov & Angelos Tsoukalas, 2025. "Out-of-sample estimation for a branch-and-bound algorithm with growing datasets," Journal of Global Optimization, Springer, vol. 92(3), pages 615-642, July.
  • Handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01514-4
    DOI: 10.1007/s10898-025-01514-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-025-01514-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-025-01514-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    2. Dominik Bongartz & Alexander Mitsos, 2017. "Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations," Journal of Global Optimization, Springer, vol. 69(4), pages 761-796, December.
    3. Bagirov, Adil M. & Ugon, Julien & Mirzayeva, Hijran, 2013. "Nonsmooth nonconvex optimization approach to clusterwise linear regression problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 132-142.
    4. A. Tsoukalas & A. Mitsos, 2014. "Multivariate McCormick relaxations," Journal of Global Optimization, Springer, vol. 59(2), pages 633-662, July.
    5. Michael R. Bussieck & Arne Stolbjerg Drud & Alexander Meeraus, 2003. "MINLPLib—A Collection of Test Models for Mixed-Integer Nonlinear Programming," INFORMS Journal on Computing, INFORMS, vol. 15(1), pages 114-119, February.
    6. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    7. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    8. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    9. Sass, Susanne & Mitsos, Alexander & Bongartz, Dominik & Bell, Ian H. & Nikolov, Nikolay I. & Tsoukalas, Angelos, 2024. "A branch-and-bound algorithm with growing datasets for large-scale parameter estimation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 36-45.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur M. Schweidtmann & Alexander Mitsos, 2019. "Deterministic Global Optimization with Artificial Neural Networks Embedded," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 925-948, March.
    2. Jaromił Najman & Dominik Bongartz & Alexander Mitsos, 2021. "Linearization of McCormick relaxations and hybridization with the auxiliary variable method," Journal of Global Optimization, Springer, vol. 80(4), pages 731-756, August.
    3. Sass, Susanne & Mitsos, Alexander & Bongartz, Dominik & Bell, Ian H. & Nikolov, Nikolay I. & Tsoukalas, Angelos, 2024. "A branch-and-bound algorithm with growing datasets for large-scale parameter estimation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 36-45.
    4. Jaromił Najman & Alexander Mitsos, 2019. "Tighter McCormick relaxations through subgradient propagation," Journal of Global Optimization, Springer, vol. 75(3), pages 565-593, November.
    5. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    6. Huiyi Cao & Kamil A. Khan, 2023. "General convex relaxations of implicit functions and inverse functions," Journal of Global Optimization, Springer, vol. 86(3), pages 545-572, July.
    7. Jaromił Najman & Alexander Mitsos, 2019. "On tightness and anchoring of McCormick and other relaxations," Journal of Global Optimization, Springer, vol. 74(4), pages 677-703, August.
    8. Christian Füllner & Peter Kirst & Hendrik Otto & Steffen Rebennack, 2024. "Feasibility Verification and Upper Bound Computation in Global Minimization Using Approximate Active Index Sets," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1737-1756, December.
    9. Dominic Yang & Prasanna Balaprakash & Sven Leyffer, 2022. "Modeling design and control problems involving neural network surrogates," Computational Optimization and Applications, Springer, vol. 83(3), pages 759-800, December.
    10. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    11. Cafieri, Sonia & Omheni, Riadh, 2017. "Mixed-integer nonlinear programming for aircraft conflict avoidance by sequentially applying velocity and heading angle changes," European Journal of Operational Research, Elsevier, vol. 260(1), pages 283-290.
    12. Victor Reyes & Ignacio Araya, 2023. "Non-Convex Optimization: Using Preconditioning Matrices for Optimally Improving Variable Bounds in Linear Relaxations," Mathematics, MDPI, vol. 11(16), pages 1-19, August.
    13. Carlos J. Nohra & Nikolaos V. Sahinidis, 2018. "Global optimization of nonconvex problems with convex-transformable intermediates," Journal of Global Optimization, Springer, vol. 72(2), pages 255-276, October.
    14. Jason Ye & Joseph K. Scott, 2023. "Extended McCormick relaxation rules for handling empty arguments representing infeasibility," Journal of Global Optimization, Springer, vol. 87(1), pages 57-95, September.
    15. Matthew E. Wilhelm & Matthew D. Stuber, 2023. "Improved Convex and Concave Relaxations of Composite Bilinear Forms," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 174-204, April.
    16. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    17. Keliang Wang & Leonardo Lozano & Carlos Cardonha & David Bergman, 2023. "Optimizing over an Ensemble of Trained Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 652-674, May.
    18. Kai Zhou & Mustafa R. Kılınç & Xi Chen & Nikolaos V. Sahinidis, 2018. "An efficient strategy for the activation of MIP relaxations in a multicore global MINLP solver," Journal of Global Optimization, Springer, vol. 70(3), pages 497-516, March.
    19. Fred Huffer & Cheolyong Park, 2000. "A test for multivariate structure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 633-650.
    20. Liang, Zheng & Liang, Yingzong & Luo, Xianglong & Chen, Jianyong & Yang, Zhi & Wang, Chao & Chen, Ying, 2022. "Superstructure-based mixed-integer nonlinear programming framework for hybrid heat sources driven organic Rankine cycle optimization," Applied Energy, Elsevier, vol. 307(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:92:y:2025:i:3:d:10.1007_s10898-025-01514-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.