IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i4d10.1007_s10898-024-01443-8.html
   My bibliography  Save this article

System architecture optimization strategies: dealing with expensive hierarchical problems

Author

Listed:
  • Jasper H. Bussemaker

    (German Aerospace Center (DLR))

  • Paul Saves

    (Université de Toulouse
    Université de Toulouse)

  • Nathalie Bartoli

    (Université de Toulouse
    Université de Toulouse)

  • Thierry Lefebvre

    (Université de Toulouse
    Université de Toulouse)

  • Rémi Lafage

    (Université de Toulouse
    Université de Toulouse)

Abstract

Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt.

Suggested Citation

  • Jasper H. Bussemaker & Paul Saves & Nathalie Bartoli & Thierry Lefebvre & Rémi Lafage, 2025. "System architecture optimization strategies: dealing with expensive hierarchical problems," Journal of Global Optimization, Springer, vol. 91(4), pages 851-895, April.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01443-8
    DOI: 10.1007/s10898-024-01443-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01443-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01443-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juliane Müller & Marcus Day, 2019. "Surrogate Optimization of Computationally Expensive Black-Box Problems with Hidden Constraints," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 689-702, October.
    2. Julien Pelamatti & Loïc Brevault & Mathieu Balesdent & El-Ghazali Talbi & Yannick Guerin, 2019. "Efficient global optimization of constrained mixed variable problems," Journal of Global Optimization, Springer, vol. 73(3), pages 583-613, March.
    3. Charles Audet & Edward Hallé-Hannan & Sébastien Le Digabel, 2023. "A General Mathematical Framework for Constrained Mixed-variable Blackbox Optimization Problems with Meta and Categorical Variables," SN Operations Research Forum, Springer, vol. 4(1), pages 1-37, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengjia Zhu & Alberto Bemporad, 2025. "Global and Preference-Based Optimization with Mixed Variables Using Piecewise Affine Surrogates," Journal of Optimization Theory and Applications, Springer, vol. 204(2), pages 1-39, February.
    2. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    3. Duarte, Belmiro P.M. & Atkinson, Anthony C. & P. Singh, Satya & S. Reis, Marco, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," LSE Research Online Documents on Economics 115187, London School of Economics and Political Science, LSE Library.
    4. Liu, Jialin & Jiang, Rui & Liu, Yang & Jia, Bin & Li, Xingang & Wang, Ting, 2024. "Managing evacuation of multiclass traffic flow: Fleet configuration, lane allocation, lane reversal, and cross elimination," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Wang, Bing-Chuan & He, Yan-Bo & Liu, Jiao & Luo, Biao, 2024. "Fast parameter identification of lithium-ion batteries via classification model-assisted Bayesian optimization," Energy, Elsevier, vol. 288(C).
    6. Juliane Müller & Jangho Park & Reetik Sahu & Charuleka Varadharajan & Bhavna Arora & Boris Faybishenko & Deborah Agarwal, 2021. "Surrogate optimization of deep neural networks for groundwater predictions," Journal of Global Optimization, Springer, vol. 81(1), pages 203-231, September.
    7. Charles Audet & Sébastien Le Digabel & Renaud Saltet, 2022. "Quantifying uncertainty with ensembles of surrogates for blackbox optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 29-66, September.
    8. Logan Mathesen & Giulia Pedrielli & Szu Hui Ng & Zelda B. Zabinsky, 2021. "Stochastic optimization with adaptive restart: a framework for integrated local and global learning," Journal of Global Optimization, Springer, vol. 79(1), pages 87-110, January.
    9. Belmiro P. M. Duarte & Anthony C. Atkinson & Satya P. Singh & Marco S. Reis, 2023. "Optimal design of experiments for hypothesis testing on ordered treatments via intersection-union tests," Statistical Papers, Springer, vol. 64(2), pages 587-615, April.
    10. Pouya Aghaei pour & Jussi Hakanen & Kaisa Miettinen, 2024. "A surrogate-assisted a priori multiobjective evolutionary algorithm for constrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 90(2), pages 459-485, October.
    11. Jamie A. Manson & Thomas W. Chamberlain & Richard A. Bourne, 2021. "MVMOO: Mixed variable multi-objective optimisation," Journal of Global Optimization, Springer, vol. 80(4), pages 865-886, August.
    12. Wenyu Wang & Christine A. Shoemaker, 2023. "Reference Vector Assisted Candidate Search with Aggregated Surrogate for Computationally Expensive Many Objective Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 318-334, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01443-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.