IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i4d10.1007_s10898-024-01366-4.html
   My bibliography  Save this article

A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems

Author

Listed:
  • Hongwei Liu

    (Xidian University)

  • Ting Wang

    (Xi’an University of Posts and Telecommunications)

  • Zexian Liu

    (Guizhou University)

Abstract

In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, and signal/image processing. To solve this problem, we propose a new nonmonotone accelerated proximal gradient method with variable stepsize strategy. Note that incorporating inertial term into proximal gradient method is a simple and efficient acceleration technique, while the descent property of the proximal gradient algorithm will lost. In our algorithm, the iterates generated by inertial proximal gradient scheme are accepted when the objective function values decrease or increase appropriately; otherwise, the iteration point is generated by proximal gradient scheme, which makes the function values on a subset of iterates are decreasing. We also introduce a variable stepsize strategy, which does not need a line search or does not need to know the Lipschitz constant and makes the algorithm easy to implement. We show that the sequence of iterates generated by the algorithm converges to a critical point of the objective function. Further, under the assumption that the objective function satisfies the Kurdyka–Łojasiewicz inequality, we prove the convergence rates of the objective function values and the iterates. Moreover, numerical results on both convex and nonconvex problems are reported to demonstrate the effectiveness and superiority of the proposed method and stepsize strategy.

Suggested Citation

  • Hongwei Liu & Ting Wang & Zexian Liu, 2024. "A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems," Journal of Global Optimization, Springer, vol. 89(4), pages 863-897, August.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01366-4
    DOI: 10.1007/s10898-024-01366-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01366-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01366-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. E. Maingé & M. L. Gobinddass, 2016. "Convergence of One-Step Projected Gradient Methods for Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 146-168, October.
    2. Radu Ioan Boţ & Ernö Robert Csetnek & Szilárd Csaba László, 2016. "An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 3-25, February.
    3. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    4. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    5. Hongwei Liu & Ting Wang & Zexian Liu, 2022. "Some modified fast iterative shrinkage thresholding algorithms with a new adaptive non-monotone stepsize strategy for nonsmooth and convex minimization problems," Computational Optimization and Applications, Springer, vol. 83(2), pages 651-691, November.
    6. Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhili Ge & Zhongming Wu & Xin Zhang & Qin Ni, 2023. "An extrapolated proximal iteratively reweighted method for nonconvex composite optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 821-844, August.
    2. Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.
    3. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    4. Zhongming Wu & Min Li, 2019. "General inertial proximal gradient method for a class of nonconvex nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 73(1), pages 129-158, May.
    5. Szilárd Csaba László, 2023. "A Forward–Backward Algorithm With Different Inertial Terms for Structured Non-Convex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 387-427, July.
    6. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    7. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    8. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    9. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    10. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    11. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    12. Gerhard Tutz & Moritz Berger, 2018. "Tree-structured modelling of categorical predictors in generalized additive regression," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 737-758, September.
    13. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Hang Yu & Yuanjia Wang & Donglin Zeng, 2023. "A general framework of nonparametric feature selection in high‐dimensional data," Biometrics, The International Biometric Society, vol. 79(2), pages 951-963, June.
    16. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    17. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    18. Gerda Claeskens & Maarten Jansen, 2023. "Comments on: Statistical inference and large-scale multiple testing for high-dimensional regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(4), pages 1177-1179, December.
    19. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    20. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:4:d:10.1007_s10898-024-01366-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.