IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i2d10.1007_s10898-023-01359-9.html
   My bibliography  Save this article

Generalized derivatives of optimal-value functions with parameterized convex programs embedded

Author

Listed:
  • Yingkai Song

    (MIT)

  • Paul I. Barton

    (MIT)

Abstract

This article proposes new practical methods for furnishing generalized derivative information of optimal-value functions with embedded parameterized convex programs, with potential applications in nonsmooth equation-solving and optimization. We consider three cases of parameterized convex programs: (1) partial convexity—functions in the convex programs are convex with respect to decision variables for fixed values of parameters, (2) joint convexity—the functions are convex with respect to both decision variables and parameters, and (3) linear programs where the parameters appear in the objective function. These new methods calculate an LD-derivative, which is a recently established useful generalized derivative concept, by constructing and solving a sequence of auxiliary linear programs. In the general partial convexity case, our new method requires that the strong Slater conditions are satisfied for the embedded convex program’s decision space, and requires that the convex program has a unique optimal solution. It is shown that these conditions are essentially less stringent than the regularity conditions required by certain established methods, and our new method is at the same time computationally preferable over these methods. In the joint convexity case, the uniqueness requirement of an optimal solution is further relaxed, and to our knowledge, there is no established method for computing generalized derivatives prior to this work. In the linear program case, both the Slater conditions and the uniqueness of an optimal solution are not required by our new method.

Suggested Citation

  • Yingkai Song & Paul I. Barton, 2024. "Generalized derivatives of optimal-value functions with parameterized convex programs embedded," Journal of Global Optimization, Springer, vol. 89(2), pages 355-378, June.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01359-9
    DOI: 10.1007/s10898-023-01359-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01359-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01359-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vikse, Matias & Watson, Harry A.J. & Kim, Donghoi & Barton, Paul I. & Gundersen, Truls, 2020. "Optimization of a dual mixed refrigerant process using a nonsmooth approach," Energy, Elsevier, vol. 196(C).
    2. Watson, Harry A.J. & Vikse, Matias & Gundersen, Truls & Barton, Paul I., 2018. "Optimization of single mixed-refrigerant natural gas liquefaction processes described by nondifferentiable models," Energy, Elsevier, vol. 150(C), pages 860-876.
    3. De Wolf, Daniel & Smeers, Yves, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," European Journal of Operational Research, Elsevier, vol. 291(2), pages 491-496.
    4. Jacques Gauvin, 1979. "The Generalized Gradient of a Marginal Function in Mathematical Programming," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 458-463, November.
    5. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    6. Kamil A. Khan & Paul I. Barton, 2014. "Generalized Derivatives for Solutions of Parametric Ordinary Differential Equations with Non-differentiable Right-Hand Sides," Journal of Optimization Theory and Applications, Springer, vol. 163(2), pages 355-386, November.
    7. De Wolf, Daniel & Smeers, Yves, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," LIDAM Reprints CORE 3140, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Jose Alberto Gomez & Kai Höffner & Kamil A. Khan & Paul I. Barton, 2018. "Generalized Derivatives of Lexicographic Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 477-501, August.
    9. William Hogan, 1973. "Directional Derivatives for Extremal-Value Functions with Applications to the Completely Convex Case," Operations Research, INFORMS, vol. 21(1), pages 188-209, February.
    10. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    11. R. T. Rockafellar, 1981. "Proximal Subgradients, Marginal Values, and Augmented Lagrangians in Nonconvex Optimization," Mathematics of Operations Research, INFORMS, vol. 6(3), pages 424-436, August.
    12. Jong-Shi Pang, 1990. "Newton's Method for B-Differentiable Equations," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 311-341, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    2. Daniel de Wolf & Yves Smeers, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," Post-Print halshs-02396708, HAL.
    3. H. Xu & X. W. Chang, 1997. "Approximate Newton Methods for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 373-394, May.
    4. De Wolf, Daniel & Smeers, Yves, 2021. "Generalized derivatives of the optimal value of a linear program with respect to matrix coefficients," European Journal of Operational Research, Elsevier, vol. 291(2), pages 491-496.
    5. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    6. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.
    7. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    8. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
    9. Vincenzo Basco, 2020. "Representation of Weak Solutions of Convex Hamilton–Jacobi–Bellman Equations on Infinite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 370-390, November.
    10. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    11. Xi Yin Zheng & Xiaoqi Yang, 2007. "Lagrange Multipliers in Nonsmooth Semi-Infinite Optimization Problems," Mathematics of Operations Research, INFORMS, vol. 32(1), pages 168-181, February.
    12. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    13. G. L. Zhou & L. Caccetta, 2008. "Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 379-392, November.
    14. C. Kanzow & H. Qi & L. Qi, 2003. "On the Minimum Norm Solution of Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(2), pages 333-345, February.
    15. Bastian Pötzl & Anton Schiela & Patrick Jaap, 2024. "Inexact proximal Newton methods in Hilbert spaces," Computational Optimization and Applications, Springer, vol. 87(1), pages 1-37, January.
    16. Kenji Ueda & Nobuo Yamashita, 2012. "Global Complexity Bound Analysis of the Levenberg–Marquardt Method for Nonsmooth Equations and Its Application to the Nonlinear Complementarity Problem," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 450-467, February.
    17. Y. D. Chen & Y. Gao & Y.-J. Liu, 2010. "An Inexact SQP Newton Method for Convex SC1 Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 146(1), pages 33-49, July.
    18. Abhishek Singh & Debdas Ghosh & Qamrul Hasan Ansari, 2024. "Inexact Newton Method for Solving Generalized Nash Equilibrium Problems," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1333-1363, June.
    19. Y. Gao, 2004. "Representation of the Clarke Generalized Jacobian via the Quasidifferential," Journal of Optimization Theory and Applications, Springer, vol. 123(3), pages 519-532, December.
    20. J. Chen & L. Qi, 2010. "Pseudotransient Continuation for Solving Systems of Nonsmooth Equations with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 147(2), pages 223-242, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:2:d:10.1007_s10898-023-01359-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.