IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i2d10.1007_s10898-023-01318-4.html
   My bibliography  Save this article

Constraint generation approaches for submodular function maximization leveraging graph properties

Author

Listed:
  • Eszter Csókás

    (University of Szeged)

  • Tamás Vinkó

    (University of Szeged)

Abstract

Submodular function maximization is an attractive optimization model and also a well-studied problem with a variety of algorithms available. Constraint generation (CG) approaches are appealing techniques to tackle the problem with, as the mixed-integer programming formulation of the problem suffers from the exponential size of the number of constraints. Most of the problems in these topics are of combinatorial nature and involve graphs on which the maximization is defined. Inspired by the recent work of Uematsu et al. (J Oper Res Soc Jpn 63:41–59, 2020), in this paper we introduce variants of the CG algorithm which take into account certain properties of the input graph aiming at informed selection of the constraints. Benchmarking results are shown to demonstrate the efficiency of the proposed methods.

Suggested Citation

  • Eszter Csókás & Tamás Vinkó, 2024. "Constraint generation approaches for submodular function maximization leveraging graph properties," Journal of Global Optimization, Springer, vol. 88(2), pages 377-394, February.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01318-4
    DOI: 10.1007/s10898-023-01318-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01318-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01318-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Nemhauser, G.L. & Wolsey, L.A., 1981. "Maximizing submodular set functions: formulations and analysis of algorithms," LIDAM Reprints CORE 455, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Cheng Lu & Wenguo Yang & Suixiang Gao, 2022. "A new greedy strategy for maximizing monotone submodular function under a cardinality constraint," Journal of Global Optimization, Springer, vol. 83(2), pages 235-247, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Méndez-Vogel, Gonzalo & Marianov, Vladimir & Lüer-Villagra, Armin, 2023. "The follower competitive facility location problem under the nested logit choice rule," European Journal of Operational Research, Elsevier, vol. 310(2), pages 834-846.
    2. Güney, Evren & Leitner, Markus & Ruthmair, Mario & Sinnl, Markus, 2021. "Large-scale influence maximization via maximal covering location," European Journal of Operational Research, Elsevier, vol. 289(1), pages 144-164.
    3. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2017. "Formulations and Approximation Algorithms for Multilevel Uncapacitated Facility Location," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 767-779, November.
    4. Hao-Hsiang Wu & Simge Küçükyavuz, 2018. "A two-stage stochastic programming approach for influence maximization in social networks," Computational Optimization and Applications, Springer, vol. 69(3), pages 563-595, April.
    5. Hao Shen & Yong Liang & Zuo-Jun Max Shen, 2021. "Reliable Hub Location Model for Air Transportation Networks Under Random Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 388-406, March.
    6. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2022. "Submodularity and local search approaches for maximum capture problems under generalized extreme value models," European Journal of Operational Research, Elsevier, vol. 300(3), pages 953-965.
    7. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    8. Guanyi Wang, 2024. "Robust Network Targeting with Multiple Nash Equilibria," Papers 2410.20860, arXiv.org, revised Nov 2024.
    9. Jiaming Hu & Dachuan Xu & Donglei Du & Cuixia Miao, 2024. "Differentially private submodular maximization with a cardinality constraint over the integer lattice," Journal of Combinatorial Optimization, Springer, vol. 47(4), pages 1-24, May.
    10. Rad Niazadeh & Negin Golrezaei & Joshua Wang & Fransisca Susan & Ashwinkumar Badanidiyuru, 2023. "Online Learning via Offline Greedy Algorithms: Applications in Market Design and Optimization," Management Science, INFORMS, vol. 69(7), pages 3797-3817, July.
    11. Alexandre D. Jesus & Luís Paquete & Arnaud Liefooghe, 2021. "A model of anytime algorithm performance for bi-objective optimization," Journal of Global Optimization, Springer, vol. 79(2), pages 329-350, February.
    12. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    13. repec:dgr:rugsom:99a17 is not listed on IDEAS
    14. Lehmann, Daniel, 2020. "Quality of local equilibria in discrete exchange economies," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 141-152.
    15. Michael Kahr & Markus Leitner & Ivana Ljubić, 2024. "The Impact of Passive Social Media Viewers in Influence Maximization," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1362-1381, December.
    16. Eric DuBois & Ashley Peper & Laura A. Albert, 2023. "Interdicting Attack Plans with Boundedly Rational Players and Multiple Attackers: An Adversarial Risk Analysis Approach," Decision Analysis, INFORMS, vol. 20(3), pages 202-219, September.
    17. Shengminjie Chen & Donglei Du & Wenguo Yang & Suixiang Gao, 2024. "Maximizing stochastic set function under a matroid constraint from decomposition," Journal of Combinatorial Optimization, Springer, vol. 48(1), pages 1-21, August.
    18. Zhenning Zhang & Bin Liu & Yishui Wang & Dachuan Xu & Dongmei Zhang, 2022. "Maximizing a monotone non-submodular function under a knapsack constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1125-1148, July.
    19. Yifan Xiong & Youze Lang & Ziyan Li, 2024. "Cost intervention in delinquent networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 62(2), pages 321-344, March.
    20. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    21. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01318-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.