IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i3d10.1007_s10898-020-00988-8.html
   My bibliography  Save this article

A dual approach to multi-dimensional assignment problems

Author

Listed:
  • Jingqun Li

    (McMaster University)

  • Thia Kirubarajan

    (McMaster University)

  • R. Tharmarasa

    (McMaster University)

  • Daly Brown

    (General Dynamics Missions Systems-Canada)

  • Krishna R. Pattipati

    (University of Connecticut)

Abstract

In this paper, we extend the purely dual formulation that we recently proposed for the three-dimensional assignment problems to solve the more general multidimensional assignment problem. The convex dual representation is derived and its relationship to the Lagrangian relaxation method that is usually used to solve multidimensional assignment problems is investigated. Also, we discuss the condition under which the duality gap is zero. It is also pointed out that the process of Lagrangian relaxation is essentially equivalent to one of relaxing the binary constraint condition, thus necessitating the auction search operation to recover the binary constraint. Furthermore, a numerical algorithm based on the dual formulation along with a local search strategy is presented. The simulation results show that the proposed algorithm outperforms the traditional Lagrangian relaxation approach in terms of both accuracy and computational efficiency.

Suggested Citation

  • Jingqun Li & Thia Kirubarajan & R. Tharmarasa & Daly Brown & Krishna R. Pattipati, 2021. "A dual approach to multi-dimensional assignment problems," Journal of Global Optimization, Springer, vol. 81(3), pages 691-716, November.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-020-00988-8
    DOI: 10.1007/s10898-020-00988-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00988-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00988-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    2. Jingqun Li & R. Tharmarasa & Daly Brown & Thia Kirubarajan & Krishna R. Pattipati, 2019. "A novel convex dual approach to three-dimensional assignment problem: theoretical analysis," Computational Optimization and Applications, Springer, vol. 74(2), pages 481-516, November.
    3. Chrysafis Vogiatzis & Eduardo Pasiliao & Panos Pardalos, 2014. "Graph partitions for the multidimensional assignment problem," Computational Optimization and Applications, Springer, vol. 58(1), pages 205-224, May.
    4. E. L. Lawler & D. E. Wood, 1966. "Branch-and-Bound Methods: A Survey," Operations Research, INFORMS, vol. 14(4), pages 699-719, August.
    5. M. L. Balinski, 1985. "Signature Methods for the Assignment Problem," Operations Research, INFORMS, vol. 33(3), pages 527-536, June.
    6. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    7. Pentico, David W., 2007. "Assignment problems: A golden anniversary survey," European Journal of Operational Research, Elsevier, vol. 176(2), pages 774-793, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingqun Li & R. Tharmarasa & Daly Brown & Thia Kirubarajan & Krishna R. Pattipati, 2019. "A novel convex dual approach to three-dimensional assignment problem: theoretical analysis," Computational Optimization and Applications, Springer, vol. 74(2), pages 481-516, November.
    2. Boštjan Gabrovšek & Tina Novak & Janez Povh & Darja Rupnik Poklukar & Janez Žerovnik, 2020. "Multiple Hungarian Method for k -Assignment Problem," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    3. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    4. Pritibhushan Sinha, 2009. "Assignment problems with changeover cost," Annals of Operations Research, Springer, vol. 172(1), pages 447-457, November.
    5. Christian Billing & Florian Jaehn & Thomas Wensing, 2020. "Fair task allocation problem," Annals of Operations Research, Springer, vol. 284(1), pages 131-146, January.
    6. Guojun Hu & Junran Lichen & Pengxiang Pan, 2023. "Two Combinatorial Algorithms for the Constrained Assignment Problem with Bounds and Penalties," Mathematics, MDPI, vol. 11(24), pages 1-12, December.
    7. Manfred Padberg & Dimitris Alevras, 1994. "Order‐preserving assignments," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(3), pages 395-421, April.
    8. Ivan Belik & Kurt Jornsten, 2018. "Critical objective function values in linear sum assignment problems," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 842-852, April.
    9. Prabhjot Kaur & Kalpana Dahiya & Vanita Verma, 2021. "Time-cost trade-off analysis of a priority based assignment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 448-482, June.
    10. Sana Bouajaja & Najoua Dridi, 2017. "A survey on human resource allocation problem and its applications," Operational Research, Springer, vol. 17(2), pages 339-369, July.
    11. Talmor, Irit, 2022. "Solving the problem of maximizing diversity in public sector teams," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    12. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    13. Kezong Tang & Xiong-Fei Wei & Yuan-Hao Jiang & Zi-Wei Chen & Lihua Yang, 2023. "An Adaptive Ant Colony Optimization for Solving Large-Scale Traveling Salesman Problem," Mathematics, MDPI, vol. 11(21), pages 1-26, October.
    14. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    15. Qingzhu Yao & Xiaoyan Zhu & Way Kuo, 2014. "A Birnbaum-importance based genetic local search algorithm for component assignment problems," Annals of Operations Research, Springer, vol. 212(1), pages 185-200, January.
    16. Weiqiang Pan & Zhilong Shan & Ting Chen & Fangjiong Chen & Jing Feng, 2016. "Optimal pilot design for OFDM systems with non-contiguous subcarriers based on semi-definite programming," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 63(2), pages 297-305, October.
    17. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    18. Chen, Liang & Tokuda, Naoyuki, 2001. "A faster data assignment algorithm for maximum likelihood-based multitarget motion tracking with bearings-only measurements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 57(1), pages 109-120.
    19. Fox, B. L. & Lenstra, J. K. & Rinnooy Kan, A. H. G. & Schrage, L. E., 1977. "Branching From The Largest Upper Bound: Folklore And Facts," Econometric Institute Archives 272158, Erasmus University Rotterdam.
    20. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-020-00988-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.