IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i3d10.1007_s10898-016-0495-4.html
   My bibliography  Save this article

Coradiant sets and $$\varepsilon $$ ε -efficiency in multiobjective optimization

Author

Listed:
  • Abbas Sayadi-bander

    (Shahid Chamran University of Ahvaz)

  • Latif Pourkarimi

    (Razi University)

  • Refail Kasimbeyli

    (Anadolu University)

  • Hadi Basirzadeh

    (Shahid Chamran University of Ahvaz)

Abstract

This paper studies $$\varepsilon $$ ε -efficiency in multiobjective optimization by using the so-called coradiant sets. Motivated by the nonlinear separation property for cones, a similar separation property for coradiant sets is investigated. A new notion, called Bishop–Phelps coradiant set is introduced and some appropriate properties of this set are studied. This paper also introduces the notions of $$\varepsilon $$ ε -dual and augmented $$\varepsilon $$ ε -dual for Bishop and Phelps coradiant sets. Using these notions, some scalarization and characterization properties for $$\varepsilon $$ ε -efficient and proper $$\varepsilon $$ ε -efficient points are proposed.

Suggested Citation

  • Abbas Sayadi-bander & Latif Pourkarimi & Refail Kasimbeyli & Hadi Basirzadeh, 2017. "Coradiant sets and $$\varepsilon $$ ε -efficiency in multiobjective optimization," Journal of Global Optimization, Springer, vol. 68(3), pages 587-600, July.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0495-4
    DOI: 10.1007/s10898-016-0495-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0495-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0495-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabián Flores-Bazán & Elvira Hernández, 2013. "Optimality conditions for a unified vector optimization problem with not necessarily preordering relations," Journal of Global Optimization, Springer, vol. 56(2), pages 299-315, June.
    2. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    3. Refail Kasimbeyli, 2013. "A conic scalarization method in multi-objective optimization," Journal of Global Optimization, Springer, vol. 56(2), pages 279-297, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jian-Wen Peng & Wen-Bin Wei & Refail Kasimbeyli, 2025. "Linear and Nonlinear Scalarization Methods for Vector Optimization Problems with Variable Ordering Structures," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-21, July.
    2. Vahid Morovati & Hadi Basirzadeh & Latif Pourkarimi, 2018. "Quasi-Newton methods for multiobjective optimization problems," 4OR, Springer, vol. 16(3), pages 261-294, September.
    3. Refail Kasimbeyli & Masoud Karimi, 2021. "Duality in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 139-160, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jian-Wen Peng & Wen-Bin Wei & Refail Kasimbeyli, 2025. "Linear and Nonlinear Scalarization Methods for Vector Optimization Problems with Variable Ordering Structures," Journal of Optimization Theory and Applications, Springer, vol. 206(1), pages 1-21, July.
    2. Nergiz Kasimbeyli, 2015. "Existence and characterization theorems in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 62(1), pages 155-165, May.
    3. Derya Deliktaş, 2022. "Self-adaptive memetic algorithms for multi-objective single machine learning-effect scheduling problems with release times," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 748-784, September.
    4. Gabriele Eichfelder & Refail Kasimbeyli, 2014. "Properly optimal elements in vector optimization with variable ordering structures," Journal of Global Optimization, Springer, vol. 60(4), pages 689-712, December.
    5. C. Gutiérrez & B. Jiménez & V. Novo, 2011. "A generic approach to approximate efficiency and applications to vector optimization with set-valued maps," Journal of Global Optimization, Springer, vol. 49(2), pages 313-342, February.
    6. Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.
    7. L. P. Hai & L. Huerga & P. Q. Khanh & V. Novo, 2019. "Variants of the Ekeland variational principle for approximate proper solutions of vector equilibrium problems," Journal of Global Optimization, Springer, vol. 74(2), pages 361-382, June.
    8. A. Engau & M. M. Wiecek, 2007. "Cone Characterizations of Approximate Solutions in Real Vector Optimization," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 499-513, September.
    9. P. Kesarwani & P. K. Shukla & J. Dutta & K. Deb, 2022. "Approximations for Pareto and Proper Pareto solutions and their KKT conditions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(1), pages 123-148, August.
    10. Le Phuoc Hai, 2021. "Ekeland variational principles involving set perturbations in vector equilibrium problems," Journal of Global Optimization, Springer, vol. 79(3), pages 733-756, March.
    11. Refail Kasimbeyli & Masoud Karimi, 2021. "Duality in nonconvex vector optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 139-160, May.
    12. Behnam Soleimani, 2014. "Characterization of Approximate Solutions of Vector Optimization Problems with a Variable Order Structure," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 605-632, August.
    13. Gutiérrez, C. & Jiménez, B. & Novo, V., 2010. "Optimality conditions via scalarization for a new [epsilon]-efficiency concept in vector optimization problems," European Journal of Operational Research, Elsevier, vol. 201(1), pages 11-22, February.
    14. César Gutiérrez & Lidia Huerga & Vicente Novo & Lionel Thibault, 2015. "Chain Rules for a Proper $$\varepsilon $$ ε -Subdifferential of Vector Mappings," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 502-526, November.
    15. Gutiérrez, C. & Jiménez, B. & Novo, V., 2012. "Improvement sets and vector optimization," European Journal of Operational Research, Elsevier, vol. 223(2), pages 304-311.
    16. C. Gutiérrez & L. Huerga & B. Jiménez & V. Novo, 2020. "Optimality conditions for approximate proper solutions in multiobjective optimization with polyhedral cones," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 526-544, July.
    17. Y. Gao & S. H. Hou & X. M. Yang, 2012. "Existence and Optimality Conditions for Approximate Solutions to Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 152(1), pages 97-120, January.
    18. C. Gutiérrez & B. Jiménez & V. Novo, 2012. "Equivalent ε-efficiency notions in vector optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 437-455, July.
    19. C. Gutiérrez & L. Huerga & V. Novo & C. Tammer, 2016. "Duality related to approximate proper solutions of vector optimization problems," Journal of Global Optimization, Springer, vol. 64(1), pages 117-139, January.
    20. Shokouh Shahbeyk & Majid Soleimani-damaneh & Refail Kasimbeyli, 2018. "Hartley properly and super nondominated solutions in vector optimization with a variable ordering structure," Journal of Global Optimization, Springer, vol. 71(2), pages 383-405, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:3:d:10.1007_s10898-016-0495-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.