IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i5d10.1007_s10878-025-01313-3.html
   My bibliography  Save this article

On combinatorial network flows algorithms and circuit augmentation for pseudoflows

Author

Listed:
  • Steffen Borgwardt

    (University of Colorado Denver)

  • Angela Morrison

    (University of Colorado Denver)

Abstract

There are numerous combinatorial algorithms for classical min-cost flow problems and their simpler variants like max flow or shortest path problems. It is well-known that many of these algorithms are related to the Simplex method and the more general circuit augmentation schemes: prime examples are the network Simplex method, a refinement of the primal Simplex method, and min-mean cycle canceling, which corresponds to a steepest-descent circuit augmentation scheme. We are interested in a deeper understanding of the relationship between circuit augmentation and combinatorial network flows algorithms. To this end, we generalize from primal flows to so-called pseudoflows, which adhere to arc capacities but allow for a violation of flow balance. We introduce ‘pseudoflow polyhedra,’ wherein slack variables are used to quantify this violation, and characterize their circuits. This enables the study of combinatorial network flows algorithms in view of the walks they trace in these polyhedra, and the pivot rules for the steps. In doing so, we provide an ‘umbrella,’ a general framework, that captures several algorithms. We show that the Successive Shortest Path Algorithm for min-cost flow problems, the Shortest Augmenting Path Algorithm for max flow problems, and the Preflow-Push algorithm for max flow problems lead to (non-edge) circuit walks in these polyhedra. The former two are replicated by circuit augmentation schemes for simple pivot rules. Further, we show that the Hungarian Method leads to an edge walk and is replicated, equivalently, as a circuit augmentation scheme or a primal Simplex run for a simple pivot rule.

Suggested Citation

  • Steffen Borgwardt & Angela Morrison, 2025. "On combinatorial network flows algorithms and circuit augmentation for pseudoflows," Journal of Combinatorial Optimization, Springer, vol. 49(5), pages 1-32, July.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:5:d:10.1007_s10878-025-01313-3
    DOI: 10.1007/s10878-025-01313-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01313-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01313-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. R. Ford & D. R. Fulkerson, 1957. "A primal‐dual algorithm for the capacitated Hitchcock problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 4(1), pages 47-54, March.
    2. H. W. Kuhn, 1955. "The Hungarian method for the assignment problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 2(1‐2), pages 83-97, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiqiang Shen & Chuanlin Zhang & Xiaona Zhang & Jinglun Shi, 2019. "A fully distributed deployment algorithm for underwater strong k-barrier coverage using mobile sensors," International Journal of Distributed Sensor Networks, , vol. 15(4), pages 15501477198, April.
    2. Bo Cowgill & Jonathan M. V. Davis & B. Pablo Montagnes & Patryk Perkowski, 2025. "Stable Matching on the Job? Theory and Evidence on Internal Talent Markets," Management Science, INFORMS, vol. 71(3), pages 2508-2526, March.
    3. András Frank, 2005. "On Kuhn's Hungarian Method—A tribute from Hungary," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(1), pages 2-5, February.
    4. Weihua Yang & Xu Zhang & Xia Wang, 2024. "The Wasserstein Metric between a Discrete Probability Measure and a Continuous One," Mathematics, MDPI, vol. 12(15), pages 1-13, July.
    5. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    6. Nisse, Nicolas & Salch, Alexandre & Weber, Valentin, 2023. "Recovery of disrupted airline operations using k-maximum matching in graphs," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1061-1072.
    7. Parvin Ahmadi & Iman Gholampour & Mahmoud Tabandeh, 2018. "Cluster-based sparse topical coding for topic mining and document clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 537-558, September.
    8. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    9. Samyajoy Pal & Christian Heumann, 2025. "Revisiting Dirichlet Mixture Model: unraveling deeper insights and practical applications," Statistical Papers, Springer, vol. 66(1), pages 1-38, January.
    10. Omar Zatarain & Jesse Yoe Rumbo-Morales & Silvia Ramos-Cabral & Gerardo Ortíz-Torres & Felipe d. J. Sorcia-Vázquez & Iván Guillén-Escamilla & Juan Carlos Mixteco-Sánchez, 2023. "A Method for Perception and Assessment of Semantic Textual Similarities in English," Mathematics, MDPI, vol. 11(12), pages 1-20, June.
    11. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    12. Winker, Peter, 2023. "Visualizing Topic Uncertainty in Topic Modelling," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277584, Verein für Socialpolitik / German Economic Association.
    13. Robert M. Curry & Joseph Foraker & Gary Lazzaro & David M. Ruth, 2024. "Practice Summary: Optimal Student Group Reassignment at U.S. Naval Academy," Interfaces, INFORMS, vol. 54(3), pages 205-210, May.
    14. Aidin Rezaeian & Hamidreza Koosha & Mohammad Ranjbar & Saeed Poormoaied, 2024. "The assignment of project managers to projects in an uncertain dynamic environment," Annals of Operations Research, Springer, vol. 341(2), pages 1107-1134, October.
    15. Andrea Flori & Alessandro Spelta, 2025. "Carbon trade biases and the emerging mesoscale structure of the European Emissions Trading System network," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    16. Tran Hoang Hai, 2020. "Estimation of volatility causality in structural autoregressions with heteroskedasticity using independent component analysis," Statistical Papers, Springer, vol. 61(1), pages 1-16, February.
    17. Delafield, Gemma & Smith, Greg S. & Day, Brett & Holland, Robert A. & Donnison, Caspar & Hastings, Astley & Taylor, Gail & Owen, Nathan & Lovett, Andrew, 2024. "Spatial context matters: Assessing how future renewable energy pathways will impact nature and society," Renewable Energy, Elsevier, vol. 220(C).
    18. P. Senthil Kumar & R. Jahir Hussain, 2016. "A Simple Method for Solving Fully Intuitionistic Fuzzy Real Life Assignment Problem," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 7(2), pages 39-61, April.
    19. Caplin, Andrew & Leahy, John, 2020. "Comparative statics in markets for indivisible goods," Journal of Mathematical Economics, Elsevier, vol. 90(C), pages 80-94.
    20. Biró, Péter & Gudmundsson, Jens, 2021. "Complexity of finding Pareto-efficient allocations of highest welfare," European Journal of Operational Research, Elsevier, vol. 291(2), pages 614-628.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:5:d:10.1007_s10878-025-01313-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.