IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v22y2011i2d10.1007_s10878-009-9284-z.html
   My bibliography  Save this article

Optimal wafer cutting in shuttle layout problems

Author

Listed:
  • Lasse Nisted

    (University of Copenhagen)

  • David Pisinger

    (Technical University of Denmark)

  • Avri Altman

    (Intel)

Abstract

A major cost in semiconductor manufacturing is the generation of photo masks which are used to produce the dies. When producing smaller series of chips it can be advantageous to build a shuttle mask (or multi-project wafer) to share the startup costs by placing different dies on the same mask. The shuttle layout problem is frequently solved in two phases: first, a floorplan of the shuttle is generated. Then, a cutting plan is found which minimizes the overall number of wafers needed to satisfy the demand of each die type. Since some die types require special production technologies, only compatible dies can be cut from a given wafer, and each cutting plan must respect various constraints on where the cuts may be placed. We present an exact algorithm for solving the minimum cutting plan problem, given a floorplan of the dies. The algorithm is based on delayed column generation, where the pricing problem becomes a maximum vertex-weighted clique problem in which each clique consists of cutting compatible dies. The resulting branch-and-price algorithm is able to solve realistic cutting problems to optimality in a couple of seconds.

Suggested Citation

  • Lasse Nisted & David Pisinger & Avri Altman, 2011. "Optimal wafer cutting in shuttle layout problems," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 202-216, August.
  • Handle: RePEc:spr:jcomop:v:22:y:2011:i:2:d:10.1007_s10878-009-9284-z
    DOI: 10.1007/s10878-009-9284-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9284-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9284-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    2. Egon Balas & Vašek Chvátal & Jaroslav Nešetřil, 1987. "On the Maximum Weight Clique Problem," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 522-535, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beraudy, Sébastien & Absi, Nabil & Dauzère-Pérès, Stéphane, 2022. "Timed route approaches for large multi-product multi-step capacitated production planning problems," European Journal of Operational Research, Elsevier, vol. 300(2), pages 602-614.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda O. C. Ayres & Betania S. C. Campello & Washington A. Oliveira & Carla T. L. S. Ghidini, 2021. "A Bi-Integrated Model for coupling lot-sizing and cutting-stock problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1047-1076, December.
    2. Sankaran, Jayaram K., 1995. "Column generation applied to linear programs in course registration," European Journal of Operational Research, Elsevier, vol. 87(2), pages 328-342, December.
    3. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    4. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    5. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    6. Letchford, Adam N. & Amaral, Andre, 2001. "Analysis of upper bounds for the Pallet Loading Problem," European Journal of Operational Research, Elsevier, vol. 132(3), pages 582-593, August.
    7. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    8. Rostami, Borzou & Malucelli, Federico & Belotti, Pietro & Gualandi, Stefano, 2016. "Lower bounding procedure for the asymmetric quadratic traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 584-592.
    9. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    10. W. D. D. Madhavee & N. Saldin & U. C. Vaidyarathna & C. J. Jayawardene, 2018. "A Practical Application of the Generalized Cutting Stock Algorithm," Academic Journal of Applied Mathematical Sciences, Academic Research Publishing Group, vol. 4(3), pages 15-21, 03-2018.
    11. Mhand Hifi & Rym M'Hallah, 2005. "An Exact Algorithm for Constrained Two-Dimensional Two-Staged Cutting Problems," Operations Research, INFORMS, vol. 53(1), pages 140-150, February.
    12. Barry C. Smith & Ellis L. Johnson, 2006. "Robust Airline Fleet Assignment: Imposing Station Purity Using Station Decomposition," Transportation Science, INFORMS, vol. 40(4), pages 497-516, November.
    13. Foad Mahdavi Pajouh & Dahai Xing & Yingjue Zhou & Sharethram Hariharan & Balabhaskar Balasundaram & Tieming Liu & Ramesh Sharda, 2013. "A Specialty Steel Bar Company Uses Analytics to Determine Available-to-Promise Dates," Interfaces, INFORMS, vol. 43(6), pages 503-517, December.
    14. Herbert Meyr & Mirko Kiel, 2022. "Minimizing setups and waste when printing labels of consumer goods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 733-761, September.
    15. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    16. Claudio Arbib & Fabrizio Marinelli & Fabrizio Rossi & Francesco Di Iorio, 2002. "Cutting and Reuse: An Application from Automobile Component Manufacturing," Operations Research, INFORMS, vol. 50(6), pages 923-934, December.
    17. Batu, Tugkan & Berenbrink, Petra & Sohler, Christian, 2009. "A sublinear-time approximation scheme for bin packing," LSE Research Online Documents on Economics 25979, London School of Economics and Political Science, LSE Library.
    18. Becker, Henrique & Buriol, Luciana S., 2019. "An empirical analysis of exact algorithms for the unbounded knapsack problem," European Journal of Operational Research, Elsevier, vol. 277(1), pages 84-99.
    19. C Alves & J M Valério de Carvalho, 2008. "New integer programming formulations and an exact algorithm for the ordered cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1520-1531, November.
    20. Maxence Delorme & Manuel Iori, 2020. "Enhanced Pseudo-polynomial Formulations for Bin Packing and Cutting Stock Problems," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 101-119, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:22:y:2011:i:2:d:10.1007_s10878-009-9284-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.