IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v13y2007i1d10.1007_s10878-006-9009-5.html
   My bibliography  Save this article

On the number of local minima for the multidimensional assignment problem

Author

Listed:
  • Don A. Grundel

    (Air Armament Center, Eglin AFB)

  • Pavlo A. Krokhmal

    (The University of Iowa)

  • Carlos A. S. Oliveira

    (Oklahoma State University)

  • Panos M. Pardalos

    (University of Florida)

Abstract

The Multidimensional Assignment Problem (MAP) is an NP-hard combinatorial optimization problem occurring in many applications, such as data association, target tracking, and resource planning. As many solution approaches to this problem rely, at least partly, on local neighborhood search algorithms, the number of local minima affects solution difficulty for these algorithms. This paper investigates the expected number of local minima in randomly generated instances of the MAP. Lower and upper bounds are developed for the expected number of local minima, E[M], in an MAP with iid standard normal coefficients. In a special case of the MAP, a closed-form expression for E[M] is obtained when costs are iid continuous random variables. These results imply that the expected number of local minima is exponential in the number of dimensions of the MAP. Our numerical experiments indicate that larger numbers of local minima have a statistically significant negative effect on the quality of solutions produced by several heuristic algorithms that involve local neighborhood search.

Suggested Citation

  • Don A. Grundel & Pavlo A. Krokhmal & Carlos A. S. Oliveira & Panos M. Pardalos, 2007. "On the number of local minima for the multidimensional assignment problem," Journal of Combinatorial Optimization, Springer, vol. 13(1), pages 1-18, January.
  • Handle: RePEc:spr:jcomop:v:13:y:2007:i:1:d:10.1007_s10878-006-9009-5
    DOI: 10.1007/s10878-006-9009-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-006-9009-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-006-9009-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Renata M. Aiex & Mauricio G. C. Resende & Panos M. Pardalos & Gerardo Toraldo, 2005. "GRASP with Path Relinking for Three-Index Assignment," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 224-247, May.
    2. William P. Pierskalla, 1968. "Letter to the Editor—The Multidimensional Assignment Problem," Operations Research, INFORMS, vol. 16(2), pages 422-431, April.
    3. Egon Balas & Matthew J. Saltzman, 1991. "An Algorithm for the Three-Index Assignment Problem," Operations Research, INFORMS, vol. 39(1), pages 150-161, February.
    4. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boštjan Gabrovšek & Tina Novak & Janez Povh & Darja Rupnik Poklukar & Janez Žerovnik, 2020. "Multiple Hungarian Method for k -Assignment Problem," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    2. Krokhmal, Pavlo A. & Pardalos, Panos M., 2009. "Random assignment problems," European Journal of Operational Research, Elsevier, vol. 194(1), pages 1-17, April.
    3. Kammerdiner, A.R. & Pasiliao, E.L., 2014. "In and out forests on combinatorial landscapes," European Journal of Operational Research, Elsevier, vol. 236(1), pages 78-84.
    4. Werners, Brigitte & Wülfing, Thomas, 2010. "Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net," European Journal of Operational Research, Elsevier, vol. 201(2), pages 419-426, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duc Manh Nguyen & Hoai An Le Thi & Tao Pham Dinh, 2014. "Solving the Multidimensional Assignment Problem by a Cross-Entropy method," Journal of Combinatorial Optimization, Springer, vol. 27(4), pages 808-823, May.
    2. Karapetyan, D. & Gutin, G., 2011. "Lin-Kernighan heuristic adaptations for the generalized traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 208(3), pages 221-232, February.
    3. Boštjan Gabrovšek & Tina Novak & Janez Povh & Darja Rupnik Poklukar & Janez Žerovnik, 2020. "Multiple Hungarian Method for k -Assignment Problem," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    4. Kim, Bum-Jin & Hightower, William L. & Hahn, Peter M. & Zhu, Yi-Rong & Sun, Lu, 2010. "Lower bounds for the axial three-index assignment problem," European Journal of Operational Research, Elsevier, vol. 202(3), pages 654-668, May.
    5. Walteros, Jose L. & Vogiatzis, Chrysafis & Pasiliao, Eduardo L. & Pardalos, Panos M., 2014. "Integer programming models for the multidimensional assignment problem with star costs," European Journal of Operational Research, Elsevier, vol. 235(3), pages 553-568.
    6. P. Senthil Kumar, 2020. "Developing a New Approach to Solve Solid Assignment Problems Under Intuitionistic Fuzzy Environment," International Journal of Fuzzy System Applications (IJFSA), IGI Global, vol. 9(1), pages 1-34, January.
    7. Renata M. Aiex & Mauricio G. C. Resende & Panos M. Pardalos & Gerardo Toraldo, 2005. "GRASP with Path Relinking for Three-Index Assignment," INFORMS Journal on Computing, INFORMS, vol. 17(2), pages 224-247, May.
    8. P. Senthil Kumar, 2020. "Algorithms for solving the optimization problems using fuzzy and intuitionistic fuzzy set," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(1), pages 189-222, February.
    9. Krokhmal, Pavlo A. & Pardalos, Panos M., 2009. "Random assignment problems," European Journal of Operational Research, Elsevier, vol. 194(1), pages 1-17, April.
    10. Mutsunori Yagiura & Toshihide Ibaraki & Fred Glover, 2004. "An Ejection Chain Approach for the Generalized Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 133-151, May.
    11. Zi-bin Jiang & Qiong Yang, 2016. "A Discrete Fruit Fly Optimization Algorithm for the Traveling Salesman Problem," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    12. Stefan Poikonen & Bruce Golden, 2020. "The Mothership and Drone Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 249-262, April.
    13. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    14. Rego, Cesar & Roucairol, Catherine, 1995. "Using Tabu search for solving a dynamic multi-terminal truck dispatching problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 411-429, June.
    15. Wayne Desarbo, 1982. "Gennclus: New models for general nonhierarchical clustering analysis," Psychometrika, Springer;The Psychometric Society, vol. 47(4), pages 449-475, December.
    16. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    17. Ghosh, Diptesh, 2016. "Exploring Lin Kernighan neighborhoods for the indexing problem," IIMA Working Papers WP2016-02-13, Indian Institute of Management Ahmedabad, Research and Publication Department.
    18. Wex, Felix & Schryen, Guido & Feuerriegel, Stefan & Neumann, Dirk, 2014. "Emergency response in natural disaster management: Allocation and scheduling of rescue units," European Journal of Operational Research, Elsevier, vol. 235(3), pages 697-708.
    19. Tino Henke & M. Grazia Speranza & Gerhard Wäscher, 2014. "The Multi-Compartment Vehicle Routing Problem with Flexible Compartment Sizes," FEMM Working Papers 140006, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    20. Yagiura, Mutsunori & Ibaraki, Toshihide, 1996. "The use of dynamic programming in genetic algorithms for permutation problems," European Journal of Operational Research, Elsevier, vol. 92(2), pages 387-401, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:13:y:2007:i:1:d:10.1007_s10878-006-9009-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.