IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v27y2025i1d10.1007_s10796-023-10443-0.html
   My bibliography  Save this article

A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption

Author

Listed:
  • Marco Arazzi

    (University of Pavia)

  • Serena Nicolazzo

    (University of Milan)

  • Antonino Nocera

    (University of Pavia)

Abstract

Anomaly detection for the Internet of Things (IoT) is a very important topic in the context of cyber-security. Indeed, as the pervasiveness of this technology is increasing, so is the number of threats and attacks targeting smart objects and their interactions. Behavioral fingerprinting has gained attention from researchers in this domain as it represents a novel strategy to model object interactions and assess their correctness and honesty. Still, there exist challenges in terms of the performance of such AI-based solutions. The main reasons can be alleged to scalability, privacy, and limitations on adopted Machine Learning algorithms. Indeed, in classical distributed fingerprinting approaches, an object models the behavior of a target contact by exploiting only the information coming from the direct interaction with it, which represents a very limited view of the target because it does not consider services and messages exchanged with other neighbors. On the other hand, building a global model of a target node behavior leveraging the information coming from the interactions with its neighbors, may lead to critical privacy concerns. To face this issue, the strategy proposed in this paper exploits Federated Learning to compute a global behavioral fingerprinting model for a target object, by analyzing its interactions with different peers in the network. Our solution allows the training of such models in a distributed way by relying also on a secure delegation strategy to involve less capable nodes in IoT. Moreover, through homomorphic encryption and Blockchain technology, our approach guarantees the privacy of both the target object and the different workers, as well as the robustness of the strategy in the presence of attacks. All these features lead to a secure fully privacy-preserving solution whose robustness, correctness, and performance are evaluated in this paper using a detailed security analysis and an extensive experimental campaign. Finally, the performance of our model is very satisfactory, as it consistently discriminates between normal and anomalous behaviors across all evaluated test sets, achieving an average accuracy value of 0.85.

Suggested Citation

  • Marco Arazzi & Serena Nicolazzo & Antonino Nocera, 2025. "A Fully Privacy-Preserving Solution for Anomaly Detection in IoT using Federated Learning and Homomorphic Encryption," Information Systems Frontiers, Springer, vol. 27(1), pages 367-390, February.
  • Handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-023-10443-0
    DOI: 10.1007/s10796-023-10443-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-023-10443-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-023-10443-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Marco Ferretti & Serena Nicolazzo & Antonino Nocera, 2021. "H2O: Secure Interactions in IoT via Behavioral Fingerprinting," Future Internet, MDPI, vol. 13(5), pages 1-29, April.
    2. Shancang Li & Li Da Xu & Shanshan Zhao, 2015. "The internet of things: a survey," Information Systems Frontiers, Springer, vol. 17(2), pages 243-259, April.
    3. Sabrina Sicari & Cinzia Cappiello & Francesco Pellegrini & Daniele Miorandi & Alberto Coen-Porisini, 2016. "A security-and quality-aware system architecture for Internet of Things," Information Systems Frontiers, Springer, vol. 18(4), pages 665-677, August.
    4. Vipindev Adat & B. B. Gupta, 2018. "Security in Internet of Things: issues, challenges, taxonomy, and architecture," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(3), pages 423-441, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qinghua Zheng & Chutong Yang & Haijun Yang & Jianhe Zhou, 2020. "A Fast Exact Algorithm for Deployment of Sensor Nodes for Internet of Things," Information Systems Frontiers, Springer, vol. 22(4), pages 829-842, August.
    2. Damminda Alahakoon & Rashmika Nawaratne & Yan Xu & Daswin Silva & Uthayasankar Sivarajah & Bhumika Gupta, 2023. "Self-Building Artificial Intelligence and Machine Learning to Empower Big Data Analytics in Smart Cities," Information Systems Frontiers, Springer, vol. 25(1), pages 221-240, February.
    3. Peter M. Bednar & Christine Welch, 0. "Socio-Technical Perspectives on Smart Working: Creating Meaningful and Sustainable Systems," Information Systems Frontiers, Springer, vol. 0, pages 1-18.
    4. Michaela Sprenger & Tobias Mettler & Robert Winter, 0. "A viability theory for digital businesses: Exploring the evolutionary changes of revenue mechanisms to support managerial decisions," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    5. Masoud Zafarzadeh & Magnus Wiktorsson & Jannicke Baalsrud Hauge, 2021. "A Systematic Review on Technologies for Data-Driven Production Logistics: Their Role from a Holistic and Value Creation Perspective," Logistics, MDPI, vol. 5(2), pages 1-32, April.
    6. Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
    7. Riikka M. Sarala & Shlomo Y. Tarba & Nadia Zahoor & Huda Khan & Sir Cary L. Cooper & Ahmad Arslan, 2025. "The impact of digitalization and virtualization on technology transfer in strategic collaborative partnerships," The Journal of Technology Transfer, Springer, vol. 50(2), pages 399-416, April.
    8. Humphrey M. Sabi & Faith-Michael E. Uzoka & Kehbuma Langmia & Felix N. Njeh & Clive K. Tsuma, 0. "A cross-country model of contextual factors impacting cloud computing adoption at universities in sub-Saharan Africa," Information Systems Frontiers, Springer, vol. 0, pages 1-24.
    9. Roman Lukyanenko & Andrea Wiggins & Holly K. Rosser, 0. "Citizen Science: An Information Quality Research Frontier," Information Systems Frontiers, Springer, vol. 0, pages 1-23.
    10. Federica Cena & Luca Console & Assunta Matassa & Ilaria Torre, 2019. "Multi-dimensional intelligence in smart physical objects," Information Systems Frontiers, Springer, vol. 21(2), pages 383-404, April.
    11. Hua Guo & Michael Scriney & Kecheng Liu, 2024. "An Ostensive Information Architecture to Enhance Semantic Interoperability for Healthcare Information Systems," Information Systems Frontiers, Springer, vol. 26(1), pages 277-300, February.
    12. Kumar Prateek & Nitish Kumar Ojha & Fahiem Altaf & Soumyadev Maity, 2023. "Quantum secured 6G technology-based applications in Internet of Everything," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 82(2), pages 315-344, February.
    13. Oscar Brousse & Charles H. Simpson & Ate Poorthuis & Clare Heaviside, 2024. "Unequal distributions of crowdsourced weather data in England and Wales," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Shang, Juan & Li, Pengfei & Li, Ling & Chen, Yong, 2018. "The relationship between population growth and capital allocation in urbanization," Technological Forecasting and Social Change, Elsevier, vol. 135(C), pages 249-256.
    15. Belfiore, Alessandra & Cuccurullo, Corrado & Aria, Massimo, 2022. "IoT in healthcare: A scientometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    16. Yong Sun & Wenan Tan, 2020. "Combining Spatial Optimization and Multi-Agent Temporal Difference Learning for Task Assignment in Uncertain Crowdsourcing," Information Systems Frontiers, Springer, vol. 22(6), pages 1447-1465, December.
    17. Xin Wang & Li Wang & Li Zhang & Xiaobo Xu & Weiyong Zhang & Yingcheng Xu, 2017. "Developing an employee turnover risk evaluation model using case-based reasoning," Information Systems Frontiers, Springer, vol. 19(3), pages 569-576, June.
    18. Takano, Yasutomo & Kajikawa, Yuya, 2019. "Extracting commercialization opportunities of the Internet of Things: Measuring text similarity between papers and patents," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 45-68.
    19. Dameri, Renata Paola & Benevolo, Clara & Veglianti, Eleonora & Li, Yaya, 2019. "Understanding smart cities as a glocal strategy: A comparison between Italy and China," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 26-41.
    20. Xin Wang & Li Wang & Li Zhang & Xiaobo Xu & Weiyong Zhang & Yingcheng Xu, 0. "Developing an employee turnover risk evaluation model using case-based reasoning," Information Systems Frontiers, Springer, vol. 0, pages 1-8.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:27:y:2025:i:1:d:10.1007_s10796-023-10443-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.