IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-016-0529-9.html
   My bibliography  Save this article

Preventive maintenance task balancing with spare parts optimisation via big-bang big-crunch algorithm

Author

Listed:
  • D. E. Ighravwe

    (University of Lagos
    Ladoke Akintola University of Technology)

  • S. A. Oke

    (University of Lagos
    Covenant University)

  • K. A. Adebiyi

    (Ladoke Akintola University of Technology)

Abstract

Work balancing increasingly plays an important role in both the production and maintenance functions. However, the literature on work balancing problems in transfer line manufacturing systems provides little information on the contributions of maintenance technicians and spare parts with a focus on penalty, technicians’ costs and incentives for staff. Unlike existing reports, the current investigation attempts to solve the maintenance task balancing problem. It combines preventive maintenance technicians’ assignments with product demand and spares utilisation in a transfer line manufacturing system. It uses an optimisation framework that measures the success of post-line balancing solution performance in a system from a holistic perspective. The novelty of the approach lies in the integration of technicians and spare parts theory and the introduction of penalty, technicians’ costs and incentive for staff. The proposed optimisation method was applied to a case study for detergent manufacturing system as a means of testing the effectiveness and robustness of the approach. The results show that the proposed model appears to be effective. Some simulations were also carried out to complement practical results.

Suggested Citation

  • D. E. Ighravwe & S. A. Oke & K. A. Adebiyi, 2017. "Preventive maintenance task balancing with spare parts optimisation via big-bang big-crunch algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 811-822, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0529-9
    DOI: 10.1007/s13198-016-0529-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0529-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0529-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ighravwe, D.E. & Oke, S.A., 2014. "A non-zero integer non-linear programming model for maintenance workforce sizing," International Journal of Production Economics, Elsevier, vol. 150(C), pages 204-214.
    2. McGovern, Seamus M. & Gupta, Surendra M., 2007. "A balancing method and genetic algorithm for disassembly line balancing," European Journal of Operational Research, Elsevier, vol. 179(3), pages 692-708, June.
    3. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    4. Bautista, Joaquin & Pereira, Jordi, 2007. "Ant algorithms for a time and space constrained assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2016-2032, March.
    5. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Yadav & Pawan Verma & Sunil Agrawal, 2020. "Mixed model two sided assembly line balancing problem: an exact solution approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 335-348, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    2. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    3. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.
    4. Hamta, Nima & Fatemi Ghomi, S.M.T. & Jolai, F. & Akbarpour Shirazi, M., 2013. "A hybrid PSO algorithm for a multi-objective assembly line balancing problem with flexible operation times, sequence-dependent setup times and learning effect," International Journal of Production Economics, Elsevier, vol. 141(1), pages 99-111.
    5. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    6. Eduardo Álvarez-Miranda & Jordi Pereira & Harold Torrez-Meruvia & Mariona Vilà, 2021. "A Hybrid Genetic Algorithm for the Simple Assembly Line Balancing Problem with a Fixed Number of Workstations," Mathematics, MDPI, vol. 9(17), pages 1-19, September.
    7. Pereira, Jordi, 2016. "Procedures for the bin packing problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 250(3), pages 794-806.
    8. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    9. Bautista, Joaquín & Cano, Alberto, 2011. "Solving mixed model sequencing problem in assembly lines with serial workstations with work overload minimisation and interruption rules," European Journal of Operational Research, Elsevier, vol. 210(3), pages 495-513, May.
    10. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    11. Özceylan, Eren & Paksoy, Turan & Bektaş, Tolga, 2014. "Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 142-164.
    12. García-Villoria, Alberto & Corominas, Albert & Nadal, Adrià & Pastor, Rafael, 2018. "Solving the accessibility windows assembly line problem level 1 and variant 1 (AWALBP-L1-1) with precedence constraints," European Journal of Operational Research, Elsevier, vol. 271(3), pages 882-895.
    13. Hesham K. Alfares, 2022. "Plant shutdown maintenance workforce team assignment and job scheduling," Journal of Scheduling, Springer, vol. 25(3), pages 321-338, June.
    14. Chica, Manuel & Bautista, Joaquín & Cordón, Óscar & Damas, Sergio, 2016. "A multiobjective model and evolutionary algorithms for robust time and space assembly line balancing under uncertain demand," Omega, Elsevier, vol. 58(C), pages 55-68.
    15. Ondemir, Onder & Gupta, Surendra M., 2014. "A multi-criteria decision making model for advanced repair-to-order and disassembly-to-order system," European Journal of Operational Research, Elsevier, vol. 233(2), pages 408-419.
    16. Bingtao Hu & Yixiong Feng & Hao Zheng & Jianrong Tan, 2018. "Sequence Planning for Selective Disassembly Aiming at Reducing Energy Consumption Using a Constraints Relation Graph and Improved Ant Colony Optimization Algorithm," Energies, MDPI, vol. 11(8), pages 1-18, August.
    17. Xuhui Xia & Wei Liu & Zelin Zhang & Lei Wang & Jianhua Cao & Xiang Liu, 2019. "A Balancing Method of Mixed-model Disassembly Line in Random Working Environment," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
    18. Kalaycılar, Eda Göksoy & Azizoğlu, Meral & Yeralan, Sencer, 2016. "A disassembly line balancing problem with fixed number of workstations," European Journal of Operational Research, Elsevier, vol. 249(2), pages 592-604.
    19. Bautista, Joaquín & Batalla-García, Cristina & Alfaro-Pozo, Rocío, 2016. "Models for assembly line balancing by temporal, spatial and ergonomic risk attributes," European Journal of Operational Research, Elsevier, vol. 251(3), pages 814-829.
    20. Manuel Chica & Joaquín Bautista & Jesica de Armas, 2019. "Benefits of robust multiobjective optimization for flexible automotive assembly line balancing," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 75-103, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0529-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.