IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v13y2022i4d10.1007_s13198-021-01608-8.html
   My bibliography  Save this article

Functional and dysfunctional analysis of a safety instrumented system (SIS) through the common cause failures (CCFs) assessment. Case of high integrity protection pressure system (HIPPS)

Author

Listed:
  • H. Metatla

    (University 20Août 1955)

  • M. Rouainia

    (University 20Août 1955)

Abstract

In oil & gas industrial plants, High Integrity Pressure Protection Systems (HIPPS) are widely used as barrier between high pressure and low pressure sections. Hence, it is necessary to optimize its reliability, availability and, maintainability to help in the implementation of HIPPS maintenance planning from a quantitative point of view. The objective of our work is included in this concept. Where a comparative study on HIPPS dependability with and without considering common cause failures (CCFs) is realized, through the quantification of CCFs effects on overall performances by considering HIPPS reliability reduction, HIPPS Safety Integrity Level degradation, and the decrease of HIPPS Mean Down Time, and production capacity. Beta factor is used to model the CCFs on HIPPS and, the reliability block diagram RBD is used for functional aspects and fault tree analysis FTA technique is used for dysfunctional aspects. The obtained simulation results show the effectiveness of the HIPPS, in keeping its safety and reliability characteristics in presence of the CCFs, the robustness, accuracy, and the suitability of the used methodology in CCFs assessment.

Suggested Citation

  • H. Metatla & M. Rouainia, 2022. "Functional and dysfunctional analysis of a safety instrumented system (SIS) through the common cause failures (CCFs) assessment. Case of high integrity protection pressure system (HIPPS)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1932-1954, August.
  • Handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01608-8
    DOI: 10.1007/s13198-021-01608-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-021-01608-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-021-01608-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hauge, S. & Hokstad, P. & HÃ¥brekke, S. & Lundteigen, M.A., 2016. "Common cause failures in safety-instrumented systems: Using field experience from the petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 34-45.
    2. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2011. "Reliability performance of safety instrumented systems: A common approach for both low- and high-demand mode of operation," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 365-373.
    3. Iyer, Srinivas, 1992. "The Barlow-Proschan importance and its generalizations with dependent components," Stochastic Processes and their Applications, Elsevier, vol. 42(2), pages 353-359, September.
    4. Gianpaolo Di Bona & Antonio Forcina & Domenico Falcone & Luca Silvestri, 2020. "Critical Risks Method (CRM): A New Safety Allocation Approach for a Critical Infrastructure," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taha Benikhlef & Djamel Benazzouz, 2023. "Damage domains of chemically reacting industrial facilities. Application to Bhopal: like scenarios," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1387-1394, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Serkan Eryilmaz, 2013. "Component importance for linear consecutive‐ k ‐Out‐of‐ n and m ‐Consecutive‐ k ‐Out‐of‐ n systems with exchangeable components," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(4), pages 313-320, June.
    2. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    3. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    4. Siwar Kriaa & Marc Bouissou & Youssef Laarouchi, 2019. "A new safety and security risk analysis framework for industrial control systems," Journal of Risk and Reliability, , vol. 233(2), pages 151-174, April.
    5. Shihab Uddin & Qing Lu & Hung Nguyen, 2021. "Truck Impact on Buried Water Pipes in Interdependent Water and Road Infrastructures," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    6. Emilio De Santis & Yaakov Malinovsky & Fabio Spizzichino, 2021. "Stochastic Precedence and Minima Among Dependent Variables," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 187-205, March.
    7. Eisinger, S. & Oliveira, L.F., 2021. "Evaluating the safety integrity of safety systems for all values of the demand rate," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    8. Marichal, Jean-Luc & Mathonet, Pierre, 2013. "On the extensions of Barlow–Proschan importance index and system signature to dependent lifetimes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 48-56.
    9. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    10. Ievgen Babeshko & Oleg Illiashenko & Vyacheslav Kharchenko & Kostiantyn Leontiev, 2022. "Towards Trustworthy Safety Assessment by Providing Expert and Tool-Based XMECA Techniques," Mathematics, MDPI, vol. 10(13), pages 1-25, June.
    11. Ben J. M. Ale & Des N. D. Hartford & David H. Slater, 2021. "Living with Legacy Risk—The Limits of Practicalities?," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    12. Dan Su & Yi-Sheng Liu & Xin-Tong Li & Xiao-Yan Chen & Dong-Han Li, 2020. "Management Path of Concrete Beam Bridge in China from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    13. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    14. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    15. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    16. Jon T Selvik & Eirik B Abrahamsen, 2017. "On the meaning of accuracy and precision in a risk analysis context," Journal of Risk and Reliability, , vol. 231(2), pages 91-100, April.
    17. Redutskiy Yury & Balycheva Marina & Dybdahl Hendrik, 2022. "Employee scheduling and maintenance planning for safety systems at the remotely located oil and gas industrial facilities," Engineering Management in Production and Services, Sciendo, vol. 14(4), pages 1-21, December.
    18. Ayoub, Ali & Stankovski, Andrej & Kröger, Wolfgang & Sornette, Didier, 2021. "The ETH Zurich curated nuclear events database: Layout, event classification, and analysis of contributing factors," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.

    More about this item

    Keywords

    HIPPS; CCFs; Beta factor model; FTA; RBD; SIL;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:13:y:2022:i:4:d:10.1007_s13198-021-01608-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.