IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v26y2017i1d10.1007_s10726-016-9502-x.html
   My bibliography  Save this article

Maximin Envy-Free Division of Indivisible Items

Author

Listed:
  • Steven J. Brams

    (New York University)

  • D. Marc Kilgour

    (Wilfrid Laurier University)

  • Christian Klamler

    (University of Graz)

Abstract

Assume that two players have strict rankings over an even number of indivisible items. We propose two algorithms to find balanced allocations of these items that are maximin—maximize the minimum rank of the items that the players receive—and are envy-free and Pareto-optimal, if such allocations exist. To determine whether an envy-free allocation exists, we introduce a simple condition on preference profiles; in fact, our condition guarantees the existence of a maximin, envy-free, and Pareto-optimal allocation. Although not strategy-proof, our algorithms would be difficult to manipulate unless a player has complete information about its opponent’s ranking. We assess the applicability of the algorithms to real-world problems, such as allocating marital property in a divorce or assigning people to committees or projects.

Suggested Citation

  • Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2017. "Maximin Envy-Free Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 26(1), pages 115-131, January.
  • Handle: RePEc:spr:grdene:v:26:y:2017:i:1:d:10.1007_s10726-016-9502-x
    DOI: 10.1007/s10726-016-9502-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-016-9502-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-016-9502-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Steven Brams & D. Kilgour & Christian Klamler, 2012. "The undercut procedure: an algorithm for the envy-free division of indivisible items," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 615-631, July.
    2. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    3. Haris Aziz, 2015. "A note on the undercut procedure," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 723-728, December.
    4. Steven J. Brams & Peter C. Fishburn, 2000. "Fair division of indivisible items between two people with identical preferences: Envy-freeness, Pareto-optimality, and equity," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 17(2), pages 247-267.
    5. David A. Kohler & R. Chandrasekaran, 1971. "A Class of Sequential Games," Operations Research, INFORMS, vol. 19(2), pages 270-277, April.
    6. Brams, Steven & Kilgour, D. Marc & Klamler, Christian, 2014. "How to divide things fairly," MPRA Paper 58370, University Library of Munich, Germany.
    7. Edelman, Paul & Fishburn, Peter, 2001. "Fair division of indivisible items among people with similar preferences," Mathematical Social Sciences, Elsevier, vol. 41(3), pages 327-347, May.
    8. Eric Budish, 2011. "The Combinatorial Assignment Problem: Approximate Competitive Equilibrium from Equal Incomes," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1061-1103.
    9. Brams,Steven J. & Taylor,Alan D., 1996. "Fair Division," Cambridge Books, Cambridge University Press, number 9780521556446, October.
    10. Dorothea Herreiner & Clemens Puppe, 2002. "A simple procedure for finding equitable allocations of indivisible goods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(2), pages 415-430.
    11. Steven J. Brams & Daniel L. King, 2005. "Efficient Fair Division," Rationality and Society, , vol. 17(4), pages 387-421, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fuad Aleskerov & Sergey Shvydun, 2019. "Allocation of Disputable Zones in the Arctic Region," Group Decision and Negotiation, Springer, vol. 28(1), pages 11-42, February.
    2. Andreas Darmann & Christian Klamler, 2019. "Using the Borda rule for ranking sets of objects," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 53(3), pages 399-414, October.
    3. Krist'of B'erczi & Erika R. B'erczi-Kov'acs & Endre Boros & Fekadu Tolessa Gedefa & Naoyuki Kamiyama & Telikepalli Kavitha & Yusuke Kobayashi & Kazuhisa Makino, 2020. "Envy-free Relaxations for Goods, Chores, and Mixed Items," Papers 2006.04428, arXiv.org.
    4. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2022. "Two-Person Fair Division of Indivisible Items when Envy-Freeness is Impossible," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
    5. Ioannis Caragiannis & David Kurokawa & Herve Moulin & Ariel D. Procaccia & Nisarg Shah & Junxing Wang, 2016. "The Unreasonable Fairness of Maximum Nash Welfare," Working Papers 2016_08, Business School - Economics, University of Glasgow.
    6. Kilgour, D. Marc & Vetschera, Rudolf, 2018. "Two-player fair division of indivisible items: Comparison of algorithms," European Journal of Operational Research, Elsevier, vol. 271(2), pages 620-631.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2014. "An algorithm for the proportional division of indivisible items," MPRA Paper 56587, University Library of Munich, Germany.
    2. Eve Ramaekers, 2013. "Fair allocation of indivisible goods: the two-agent case," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 41(2), pages 359-380, July.
    3. Fedor Sandomirskiy & Erel Segal-Halevi, 2019. "Efficient Fair Division with Minimal Sharing," Papers 1908.01669, arXiv.org, revised Apr 2022.
    4. Andreas Darmann & Christian Klamler, 2016. "Proportional Borda allocations," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(3), pages 543-558, October.
    5. Steven J. Brams & D. Marc Kilgour & Christian Klamler, 2022. "Two-Person Fair Division of Indivisible Items when Envy-Freeness is Impossible," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
    6. Steven Brams & D. Kilgour & Christian Klamler, 2012. "The undercut procedure: an algorithm for the envy-free division of indivisible items," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(2), pages 615-631, July.
    7. RAMAEKERS, Eve, 2010. "Fair allocation of indivisible goods among two agents," LIDAM Discussion Papers CORE 2010087, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Rudolf Vetschera & D. Marc Kilgour, 2013. "Strategic Behavior in Contested-Pile Methods for Fair Division of Indivisible Items," Group Decision and Negotiation, Springer, vol. 22(2), pages 299-319, March.
    9. Haris Aziz, 2016. "A generalization of the AL method for fair allocation of indivisible objects," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 4(2), pages 307-324, October.
    10. Brams, Steven J. & Kilgour, D. Marc & Klamler, Christian, 2013. "Two-Person Fair Division of Indivisible Items: An Efficient, Envy-Free Algorithm," MPRA Paper 47400, University Library of Munich, Germany.
    11. Nhan-Tam Nguyen & Dorothea Baumeister & Jörg Rothe, 2018. "Strategy-proofness of scoring allocation correspondences for indivisible goods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 50(1), pages 101-122, January.
    12. Dall'Aglio, Marco & Mosca, Raffaele, 2007. "How to allocate hard candies fairly," Mathematical Social Sciences, Elsevier, vol. 54(3), pages 218-237, December.
    13. Suksompong, Warut, 2018. "Approximate maximin shares for groups of agents," Mathematical Social Sciences, Elsevier, vol. 92(C), pages 40-47.
    14. Brams,S.L. & Kaplan,T.R., 2002. "Dividing the indivisible : procedures for allocating cabinet ministries to political parties in a parliamentary system," Center for Mathematical Economics Working Papers 340, Center for Mathematical Economics, Bielefeld University.
    15. Kilgour, D. Marc & Vetschera, Rudolf, 2018. "Two-player fair division of indivisible items: Comparison of algorithms," European Journal of Operational Research, Elsevier, vol. 271(2), pages 620-631.
    16. Thomson, William, 2011. "Chapter Twenty-One - Fair Allocation Rules," Handbook of Social Choice and Welfare, in: K. J. Arrow & A. K. Sen & K. Suzumura (ed.), Handbook of Social Choice and Welfare, edition 1, volume 2, chapter 21, pages 393-506, Elsevier.
    17. Manurangsi, Pasin & Suksompong, Warut, 2017. "Asymptotic existence of fair divisions for groups," Mathematical Social Sciences, Elsevier, vol. 89(C), pages 100-108.
    18. Gian Caspari, 2023. "A market design solution to a multi-category housing allocation problem," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 8(1), pages 75-96, December.
    19. Steven J. Brams & Todd R. Kaplan, 2004. "Dividing the Indivisible," Journal of Theoretical Politics, , vol. 16(2), pages 143-173, April.
    20. Haris Aziz, 2015. "A note on the undercut procedure," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 45(4), pages 723-728, December.

    More about this item

    Keywords

    Fair division; Allocation of indivisible items; Envy-freeness; Maximin;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:26:y:2017:i:1:d:10.1007_s10726-016-9502-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.