IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v24y2025i3d10.1007_s10700-025-09453-1.html
   My bibliography  Save this article

Fuzzy demand electric vehicle routing problem with soft time windows

Author

Listed:
  • Nour Abdulatif

    (Nile University)

  • Mohamed A.W. Shalaby

    (Nile University
    Cairo University)

  • Sally S. Kassem

    (Cairo University)

  • Tarek Khalil

    (Nile University)

Abstract

This research introduces a novel contribution to the Electric Vehicle Routing Problem (EVRP) field by addressing fuzzy demands, soft time windows, and recharging at demand points. The problem is formulated as a mixed-integer linear programming model that incorporates uncertainties in demand levels and allows flexibility in time windows with a penalty for its violation. LINGO software is utilized to solve the proposed model. To assess the effect of fuzzy demand, a parametric analysis is conducted by varying the fuzzy demand parameters using lexicographic fuzzy method implemented by LINGO. The model’s validity and effectiveness are verified using Solomon’s benchmark dataset, and further applied to a case study from the Egyptian local market. The solutions obtained are evaluated based on total costs incurred and total CO2 emissions. By analyzing the resulting solutions, managerial implications are deduced, providing a framework for decision-makers in electric vehicle fleet management. Recommendations are made to decision makers on fuzzy demand modeling techniques, charging infrastructure, pricing and incentive strategies, and management systems. This study contributes to the advancement of EVRP research, offering practical solutions for real-world transportation planning and logistics management.

Suggested Citation

  • Nour Abdulatif & Mohamed A.W. Shalaby & Sally S. Kassem & Tarek Khalil, 2025. "Fuzzy demand electric vehicle routing problem with soft time windows," Fuzzy Optimization and Decision Making, Springer, vol. 24(3), pages 457-481, September.
  • Handle: RePEc:spr:fuzodm:v:24:y:2025:i:3:d:10.1007_s10700-025-09453-1
    DOI: 10.1007/s10700-025-09453-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-025-09453-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-025-09453-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Merve Cengiz Toklu, 2023. "A fuzzy multi-criteria approach based on Clarke and Wright savings algorithm for vehicle routing problem in humanitarian aid distribution," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2241-2261, June.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. Tao Yang & Weixin Wang & Qiqi Wu, 2022. "Fuzzy Demand Vehicle Routing Problem with Soft Time Windows," Sustainability, MDPI, vol. 14(9), pages 1-14, May.
    4. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    5. Seyed Mojib Zahraee & Fatemeh Mamizadeh & Seyyed Amir Vafaei, 2018. "Greening Assessment of Suppliers in Automotive Supply Chain: An Empirical Survey of the Automotive Industry in Iran," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(3), pages 225-238, September.
    6. Boris Pérez-Cañedo & José Luis Verdegay & Eduardo René Concepción-Morales & Alejandro Rosete, 2020. "Lexicographic Methods for Fuzzy Linear Programming," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    7. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    8. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Débora P. Ronconi & João L. V. Manguino, 2025. "GRASP and VNS approaches for a vehicle routing problem with step cost functions," Annals of Operations Research, Springer, vol. 350(1), pages 37-62, July.
    2. Wang, Yong & Wei, Zikai & Luo, Siyu & Zhou, Jingxin & Zhen, Lu, 2024. "Collaboration and resource sharing in the multidepot time-dependent vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    3. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    4. Fleming, Christopher L. & Griffis, Stanley E. & Bell, John E., 2013. "The effects of triangle inequality on the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 224(1), pages 1-7.
    5. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    6. Liu, Yiming & Yu, Yang & Baldacci, Roberto & Tang, Jiafu & Sun, Wei, 2025. "Optimizing carbon emissions in green logistics for time-dependent routing," Transportation Research Part B: Methodological, Elsevier, vol. 192(C).
    7. Paraskevopoulos, Dimitris C. & Laporte, Gilbert & Repoussis, Panagiotis P. & Tarantilis, Christos D., 2017. "Resource constrained routing and scheduling: Review and research prospects," European Journal of Operational Research, Elsevier, vol. 263(3), pages 737-754.
    8. Frey, Christian M.M. & Jungwirth, Alexander & Frey, Markus & Kolisch, Rainer, 2023. "The vehicle routing problem with time windows and flexible delivery locations," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1142-1159.
    9. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    10. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    11. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    12. Frank, Markus & Ostermeier, Manuel & Holzapfel, Andreas & Hübner, Alexander & Kuhn, Heinrich, 2021. "Optimizing routing and delivery patterns with multi-compartment vehicles," European Journal of Operational Research, Elsevier, vol. 293(2), pages 495-510.
    13. Ostermeier, Manuel, 2024. "The supply of convenience stores: Challenges of short-distance routing within the constraints of working time regulations," European Journal of Operational Research, Elsevier, vol. 314(3), pages 997-1012.
    14. Tan Yu & Yongpei Guan & Xiang Zhong, 2024. "Visiting nurses assignment and routing for decentralized telehealth service networks," Annals of Operations Research, Springer, vol. 341(2), pages 1191-1221, October.
    15. Shijin Wang & Xiaodong Wang & Xin Liu & Jianbo Yu, 2018. "A Bi-Objective Vehicle-Routing Problem with Soft Time Windows and Multiple Depots to Minimize the Total Energy Consumption and Customer Dissatisfaction," Sustainability, MDPI, vol. 10(11), pages 1-21, November.
    16. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    17. Gilbert Laporte, 2016. "Scheduling issues in vehicle routing," Annals of Operations Research, Springer, vol. 236(2), pages 463-474, January.
    18. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
    19. Brandstätter, Christian & Reimann, Marc, 2018. "The Line-haul Feeder Vehicle Routing Problem: Mathematical model formulation and heuristic approaches," European Journal of Operational Research, Elsevier, vol. 270(1), pages 157-170.
    20. Z. Al Chami & H. Manier & M.-A. Manier, 2019. "A lexicographic approach for the bi-objective selective pickup and delivery problem with time windows and paired demands," Annals of Operations Research, Springer, vol. 273(1), pages 237-255, February.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:24:y:2025:i:3:d:10.1007_s10700-025-09453-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.