IDEAS home Printed from https://ideas.repec.org/a/spr/flsman/v35y2023i3d10.1007_s10696-022-09447-w.html
   My bibliography  Save this article

DSS approach for sustainable system design of shuttle-based storage and retrieval systems

Author

Listed:
  • Yanyan Wang

    (Shenzhen Research Institute, Shandong University
    Shandong University)

  • Jinning Qin

    (Shandong University)

  • Shandong Mou

    (Central University of Finance and Economics)

  • Ke Huang

    (Shandong University)

  • Xiaofeng Zhao

    (Shandong University)

Abstract

Automated warehousing systems need to balance operational efficiency, energy consumption and overall system cost in sustainable supply chains. This paper presents an analytical model-based Decision Support System (DSS) for sustainable system design of Shuttle-Based Storage and Retrieval System (SBS/RS). Multiple system design indicators, namely mean service time, mean energy consumption, and overall system cost, are considered in a mathematical model. A simulation model is developed to validate the accuracy of the mathematical model. Extensive numerical experiments explore the impacts of rack design and equipment operating parameters on various system performance indicators and summarize balanced equipment operating settings. Overall, this study provides an analytical-model based DSS on sustainable SBS/RS configurations for decision-making managers and system designers.

Suggested Citation

  • Yanyan Wang & Jinning Qin & Shandong Mou & Ke Huang & Xiaofeng Zhao, 2023. "DSS approach for sustainable system design of shuttle-based storage and retrieval systems," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 698-726, September.
  • Handle: RePEc:spr:flsman:v:35:y:2023:i:3:d:10.1007_s10696-022-09447-w
    DOI: 10.1007/s10696-022-09447-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10696-022-09447-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10696-022-09447-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-02313400, HAL.
    2. Xiao Cai & Sunderesh S. Heragu & Yang Liu, 2014. "Modeling and evaluating the AVS/RS with tier-to-tier vehicles using a semi-open queueing network," IISE Transactions, Taylor & Francis Journals, vol. 46(9), pages 905-927, September.
    3. Yanyan Wang & Shandong Mou & Yaohua Wu, 2015. "Task scheduling for multi-tier shuttle warehousing systems," International Journal of Production Research, Taylor & Francis Journals, vol. 53(19), pages 5884-5895, October.
    4. Emanuele Guerrazzi & Valeria Mininno & Davide Aloini & Riccardo Dulmin & Claudio Scarpelli & Marco Sabatini, 2019. "Energy Evaluation of Deep-Lane Autonomous Vehicle Storage and Retrieval System," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    5. Debjit Roy & Ananth Krishnamurthy & Sunderesh Heragu & Charles Malmborg, 2012. "Performance analysis and design trade-offs in warehouses with autonomous vehicle technology," IISE Transactions, Taylor & Francis Journals, vol. 44(12), pages 1045-1060.
    6. Banu Yetkin Ekren, 2021. "A multi-objective optimisation study for the design of an AVS/RS warehouse," International Journal of Production Research, Taylor & Francis Journals, vol. 59(4), pages 1107-1126, February.
    7. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    8. Elena Tappia & Debjit Roy & René de Koster & Marco Melacini, 2017. "Modeling, Analysis, and Design Insights for Shuttle-Based Compact Storage Systems," Transportation Science, INFORMS, vol. 51(1), pages 269-295, February.
    9. Zou, Bipan & Xu, Xianhao & (Yale) Gong, Yeming & De Koster, René, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," European Journal of Operational Research, Elsevier, vol. 254(1), pages 51-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tappia, Elena & Roy, Debjit & Melacini, Marco & De Koster, René, 2019. "Integrated storage-order picking systems: Technology, performance models, and design insights," European Journal of Operational Research, Elsevier, vol. 274(3), pages 947-965.
    2. Dong, Wenquan & Jin, Mingzhou, 2021. "Travel time models for tier-to-tier SBS/RS with different storage assignment policies and shuttle dispatching rules," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    3. Kumawat, Govind Lal & Roy, Debjit & De Koster, René & Adan, Ivo, 2021. "Stochastic modeling of parallel process flows in intra-logistics systems: Applications in container terminals and compact storage systems," European Journal of Operational Research, Elsevier, vol. 290(1), pages 159-176.
    4. Wenquan Dong & Mingzhou Jin & Yanyan Wang & Peter Kelle, 2021. "Retrieval scheduling in crane-based 3D automated retrieval and storage systems with shuttles," Annals of Operations Research, Springer, vol. 302(1), pages 111-135, July.
    5. Bipan Zou & René De Koster & Xianhao Xu, 2018. "Operating Policies in Robotic Compact Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 52(4), pages 788-811, August.
    6. Chen, Ran & Yang, Jingjing & Yu, Yugang & Guo, Xiaolong, 2023. "Retrieval request scheduling in a shuttle-based storage and retrieval system with two lifts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    7. Wu, Guangmei & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René & Zou, Bipan, 2019. "Optimal design and planning for compact automated parking systems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 948-967.
    8. Kaveh Azadeh & Debjit Roy & René De Koster, 2019. "Design, Modeling, and Analysis of Vertical Robotic Storage and Retrieval Systems," Transportation Science, INFORMS, vol. 53(5), pages 1213-1234, September.
    9. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    10. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    11. Yang, Jingjing & de Koster, René B.M. & Guo, Xiaolong & Yu, Yugang, 2023. "Scheduling shuttles in deep-lane shuttle-based storage systems," European Journal of Operational Research, Elsevier, vol. 308(2), pages 696-708.
    12. Liu, Tian & Gong, Yeming & De Koster, René B.M., 2018. "Travel time models for split-platform automated storage and retrieval systems," International Journal of Production Economics, Elsevier, vol. 197(C), pages 197-214.
    13. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
    14. Carolina Gerini & Anna Sciomachen, 2019. "Evaluation of the flow of goods at a warehouse logistic department by Petri Nets," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 354-380, June.
    15. Azadeh, K. & de Koster, M.B.M. & Roy, D., 2017. "Robotized Warehouse Systems: Developments and Research Opportunities," ERIM Report Series Research in Management ERS-2017-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Azadeh, K. & Roy, D. & de Koster, M.B.M., 2016. "Vertical or Horizontal Transport? - Comparison of robotic storage and retrieval systems," ERIM Report Series Research in Management ERS-2016-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Amjath, Mohamed & Kerbache, Laoucine & Smith, James MacGregor & Elomri, Adel, 2022. "Fleet sizing of trucks for an inter-facility material handling system using closed queueing networks," Operations Research Perspectives, Elsevier, vol. 9(C).
    18. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2016. "Modeling parallel movement of lifts and vehicles in tier-captive vehicle-based warehousing systems," Post-Print hal-01892897, HAL.
    19. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    20. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:flsman:v:35:y:2023:i:3:d:10.1007_s10696-022-09447-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.