IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v5y2001i4p511-525.html
   My bibliography  Save this article

Stochastic flows and the forward measure

Author

Listed:
  • Robert J. Elliott

    () (Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1)

  • John van der Hoek

    () (Department of Applied Mathematics, University of Adelaide, Adelaide, South Australia 5005 Mauscript)

Abstract

Stochastic flows and their Jacobians are used to show why, when the short rate process is described by Gaussian dynamics, (as in the Vasicek or Hull-White models), or square root, affine (Bessel) processes, (as in the Cox-Ingersoll-Ross, or Duffie-Kan models), the bond price is an exponential affine function. Using the forward measure the bond price is obtained by solving a linear ordinary differential equation; Ricatti equations are not required.

Suggested Citation

  • Robert J. Elliott & John van der Hoek, 2001. "Stochastic flows and the forward measure," Finance and Stochastics, Springer, vol. 5(4), pages 511-525.
  • Handle: RePEc:spr:finsto:v:5:y:2001:i:4:p:511-525 Note: received: February 1999; final version received: October 2000
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00780/papers/1005004/10050511.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26.
    2. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    3. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    4. Björk, Tomas & Svensson, Lars, 1999. "On the Existence of Finite Dimensional Realizations for Nonlinear Forward Rate Models," SSE/EFI Working Paper Series in Economics and Finance 338, Stockholm School of Economics.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    6. Carl Chiarella & Oh-Kang Kwon, 2000. "A Class of Heath-Jarrow-Morton Term Structure Models with Stochastic Volatility," Research Paper Series 34, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-384, March.
    8. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
    9. Tomas BjÃrk & Andrea Gombani, 1999. "Minimal realizations of interest rate models," Finance and Stochastics, Springer, vol. 3(4), pages 413-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyndman, Cody Blaine, 2007. "Forward-backward SDEs and the CIR model," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1676-1682, November.
    2. Robert Elliott & Katsumasa Nishide, 2014. "Pricing of discount bonds with a Markov switching regime," Annals of Finance, Springer, vol. 10(3), pages 509-522, August.
    3. Robert Elliott & Rogemar Mamon, 2002. "An interest rate model with a Markovian mean reverting level," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 454-458.
    4. Shen, Yang & Siu, Tak Kuen, 2012. "Asset allocation under stochastic interest rate with regime switching," Economic Modelling, Elsevier, vol. 29(4), pages 1126-1136.
    5. Cody Hyndman & Xinghua Zhou, 2014. "Explicit solutions of quadratic FBSDEs arising from quadratic term structure models," Papers 1410.1220, arXiv.org, revised Dec 2014.

    More about this item

    Keywords

    Forward measure; exponential affine; bond pricing;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:5:y:2001:i:4:p:511-525. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.