IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v97y2024i3d10.1140_epjb_s10051-024-00664-w.html
   My bibliography  Save this article

Interfacial properties in planar SiC/2D metals from first principles

Author

Listed:
  • Xiao Ouyang

    (Beijing Normal University)

  • Bin Liao

    (Beijing Normal University)

  • Baoan Bian

    (Jiangnan University)

Abstract

We construct the in-plane heterojunctions of Boroβ12/SiC and Graphene/SiC to study the effect of different interface contacts on the electronic properties using first-principle calculations. The metalization of SiC at the contact interface is found in both heterojunctions, and two heterojunctions show high charge inject efficiency. The Boroβ12/SiC possesses p-type Schottky contact, while Graphene/SiC shows n-type Schottky contact. When the electric field is applied to two heterojunctions, the Schottky barrier height and contact type are changed, and the Ohmic contact is achieved at negative electric field. The results propose a way to design planar SiC-based electronic device with tunable interface contact. Graphical abstract Figure-projected local density of states and transmission spectra of (a) Boroβ12/SiC and (b) Graphene/SiC. The Boroβ12/SiC shows p-type Schottky contact with SBH of 1.071 eV, while Graphene/SiC presents n-type Schottky contact with SBH of 1.021 eV. It can be seen that the metalization of SiC at contact interface in Boroβ12/SiC is more clear than Graphene/SiC. There are fewer metal-induced gap states in the bandgap in Graphene/SiC than Boroβ12/SiC, suggesting the better electric contact in Graphene/SiC. Combined with ΦTB and SBH, Graphene/SiC has a good electronic transport.

Suggested Citation

  • Xiao Ouyang & Bin Liao & Baoan Bian, 2024. "Interfacial properties in planar SiC/2D metals from first principles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(3), pages 1-9, March.
  • Handle: RePEc:spr:eurphb:v:97:y:2024:i:3:d:10.1140_epjb_s10051-024-00664-w
    DOI: 10.1140/epjb/s10051-024-00664-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-024-00664-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-024-00664-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:97:y:2024:i:3:d:10.1140_epjb_s10051-024-00664-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.