IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i6d10.1007_s10668-023-03274-1.html
   My bibliography  Save this article

Vulnerability assessment of urban waterbodies based on WRASTIC model

Author

Listed:
  • Smita Maheshwari

    (Maulana Azad National Institute of Technology)

  • Supriya Vyas

    (Maulana Azad National Institute of Technology)

Abstract

Globally, urban waterbodies are continually degrading due to the stresses from both natural and man-made changes. The vulnerability of the water resources system is directly impacted by various threats other than population expansion, such as changes in land use, socio-economic development, and climate change and their sustainability is often challenging. Importance of the natural balance restoration becomes crucial, which would lead to a sustainable development. It is necessary to analyze the environmental deviations in a catchment and their amplitude and decide where one may contribute. This study focuses on assessing the pollution risk index of the urban waterbodies by developing an appropriate extension of WRASTIC (wastewater, recreation, agriculture, size of the watershed, transportation, industrial, and vegetation cover) namely, WRASTIC-HI (WRASTIC-Hazard Index), a novel multi-criteria analysis for identifying potential sources and degree of contamination. The vulnerability assessment of the Upper Lake of city Bhopal to contamination has been computed using WRASTIC-HI and the result indicated that the catchment is at high risk with a high score (71) which is entitled to a three-year waiver illustrating that if the threats continue to increase in and around the catchment, the lake will sooner face more risk. The proposed technique makes use of open-source data as well as field surveys, making it a highly helpful tool for evaluating ecosystems with little time and expense and supporting planners, managers, and administrators for sustainable planning and decision-making with no need for complex computations or the collection of exhaustive scientific data.

Suggested Citation

  • Smita Maheshwari & Supriya Vyas, 2024. "Vulnerability assessment of urban waterbodies based on WRASTIC model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 15803-15821, June.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03274-1
    DOI: 10.1007/s10668-023-03274-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03274-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03274-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erol, Ayten & Randhir, Timothy O., 2013. "Watershed ecosystem modeling of land-use impacts on water quality," Ecological Modelling, Elsevier, vol. 270(C), pages 54-63.
    2. repec:asg:wpaper:1036 is not listed on IDEAS
    3. Ryan Plummer & Rob Loë & Derek Armitage, 2012. "A Systematic Review of Water Vulnerability Assessment Tools," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(15), pages 4327-4346, December.
    4. Patricia Gober & Anthony Brazel & Ray Quay & Soe Myint & Susanne Grossman-Clarke & Adam Miller & Steve Rossi, 2010. "Using Watered Landscapes to Manipulate Urban Heat Island Effects: How Much Water Will It Take to Cool Phoenix?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(1), pages 109-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. E. Dickson & C. J. Schuster-Wallace & J. J. Newton, 2016. "Water Security Assessment Indicators: The Rural Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1567-1604, March.
    2. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    3. Chen Lin & Ronghua Ma & Zhihu Su & Qing Zhu, 2015. "Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake," IJERPH, MDPI, vol. 12(2), pages 1-20, January.
    4. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    5. Ioannis Souliotis & Nikolaos Voulvoulis, 2021. "Natural Capital Accounting Informing Water Management Policies in Europe," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
    6. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    7. Wang, Zhi-Hua & Zhao, Xiaoxi & Yang, Jiachuan & Song, Jiyun, 2016. "Cooling and energy saving potentials of shade trees and urban lawns in a desert city," Applied Energy, Elsevier, vol. 161(C), pages 437-444.
    8. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    9. Chen Lin & Ronghua Ma & Bin He, 2015. "Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)," IJERPH, MDPI, vol. 13(1), pages 1-14, December.
    10. You, L. & Li, Y.P. & Huang, G.H. & Zhang, J.L., 2014. "Modeling regional ecosystem development under uncertainty – A case study for New Binhai District of Tianjin," Ecological Modelling, Elsevier, vol. 288(C), pages 127-142.
    11. Danuta Grosbois & Ryan Plummer, 2015. "Problematizing Water Vulnerability Indices at a Local Level: a Critical Review and Proposed Solution," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5015-5035, November.
    12. Diego Azqueta & Álvaro Montoya, 2017. "The social benefits of water and sanitation projects in Northern Colombia: Cost-Benefit Analysis, the Water Poverty Index and beyond," Development Policy Review, Overseas Development Institute, vol. 35, pages 118-139, October.
    13. Jay Simon & Craig W. Kirkwood & L. Robin Keller, 2014. "Decision Analysis with Geographically Varying Outcomes: Preference Models and Illustrative Applications," Operations Research, INFORMS, vol. 62(1), pages 182-194, February.
    14. Yunfang Jiang & Luyao Hou & Tiemao Shi & Qinchang Gui, 2017. "A Review of Urban Planning Research for Climate Change," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    15. Yifan Ding & Deshan Tang & Huichao Dai & Yuhang Wei, 2014. "Human-Water Harmony Index: A New Approach to Assess the Human Water Relationship," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1061-1077, March.
    16. Wang, Yihang & Wang, Zhi-Hua & Rahmatollahi, Negar & Hou, Haoran, 2024. "The impact of roof systems on cooling and building energy efficiency," Applied Energy, Elsevier, vol. 376(PB).
    17. Graham McDowell & Eleanor Stephenson & James Ford, 2014. "Adaptation to climate change in glaciated mountain regions," Climatic Change, Springer, vol. 126(1), pages 77-91, September.
    18. S. Dickson & C. Schuster-Wallace & J. Newton, 2016. "Water Security Assessment Indicators: The Rural Context," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1567-1604, March.
    19. repec:asg:wpaper:1041 is not listed on IDEAS
    20. Itziar González Tánago & Julia Urquijo & Veit Blauhut & Fermín Villarroya & Lucia De Stefano, 2016. "Learning from experience: a systematic review of assessments of vulnerability to drought," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 951-973, January.
    21. Emma Norman & Gemma Dunn & Karen Bakker & Diana Allen & Rafael Cavalcanti de Albuquerque, 2013. "Water Security Assessment: Integrating Governance and Freshwater Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 535-551, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:6:d:10.1007_s10668-023-03274-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.