IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v24y1999i2p271-301.html
   My bibliography  Save this article

Performance of periodic time series models in forecasting

Author

Listed:
  • Helmut Herwartz

    (Institut fØr Statistik und ãkonometrie, Humboldt UniversitÄt zu Berlin, Spandauer Str. 1, D-10178 Berlin, Germany)

Abstract

The paper provides a comparison of alternative univariate time series models that are advocated for the analysis of seasonal data. Consumption and income series from (West-) Germany, United Kingdom, Japan and Sweden are investigated. The performance of competing models in forecasting is used to assess the adequacy of a specific model. To account for nonstationarity first and annual differences of the series are investigated. In addition, time series models assuming periodic integration are evaluated. To describe the stationary dynamics (standard) time invariant parametrizations are compared with periodic time series models conditioning the data generating process on the season. Periodic models improve the in-sample fit considerably but in most cases under study this model class involves a loss in ex-ante forecasting relative to nonperiodic models. Inference on unit-roots indicates that the nonstationary characteristics of consumption and income data may differ. For German and Swedish data forecasting exercises yield a unique recommendation of unit roots in consumption and income data which is an important (initial) result for multivariate analysis. Time series models assuming periodic integration are parsimonious to specify but often involve correlated one-step-ahead forecast errors.

Suggested Citation

  • Helmut Herwartz, 1999. "Performance of periodic time series models in forecasting," Empirical Economics, Springer, vol. 24(2), pages 271-301.
  • Handle: RePEc:spr:empeco:v:24:y:1999:i:2:p:271-301
    Note: received: April 1996/final version received: January 1998
    as

    Download full text from publisher

    File URL: http://link.springer.de/link/service/journals/00181/papers/9024002/90240271.pdf
    Download Restriction: Access to the full text of the articles in this series is restricted
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franses, Ph.H.B.F. & Paap, R., 1999. "Forecasting with periodic autoregressive time series models," Econometric Institute Research Papers EI 9927-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Philip Hans Franses & Richard Paap, 2011. "Random‐coefficient periodic autoregressions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 101-115, February.
    3. Łukasz Lenart, 2017. "Examination of Seasonal Volatility in HICP for Baltic Region Countries: Non-Parametric Test versus Forecasting Experiment," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 29-67, March.
    4. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.

    More about this item

    Keywords

    Forecasting · periodic models · seasonality · unit roots;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:24:y:1999:i:2:p:271-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.