IDEAS home Printed from https://ideas.repec.org/a/spr/dyngam/v14y2024i3d10.1007_s13235-023-00509-8.html
   My bibliography  Save this article

Bernstein Polynomial Approximation of Fixation Probability in Finite Population Evolutionary Games

Author

Listed:
  • Jiyeon Park

    (University of Southern California)

  • Paul K. Newton

    (University of Southern California
    University of Southern California
    University of Southern California)

Abstract

We use the Bernstein polynomials of degree d as the basis for constructing a uniform approximation to the rate of evolution (related to the fixation probability) of a species in a two-component finite-population, well-mixed, frequency-dependent evolutionary game setting. The approximation is valid over the full range $$0 \le w \le 1$$ 0 ≤ w ≤ 1 , where w is the selection pressure parameter, and converges uniformly to the exact solution as $$d \rightarrow \infty $$ d → ∞ . We compare it to a widely used non-uniform approximation formula in the weak-selection limit ( $$w \sim 0$$ w ∼ 0 ) as well as numerically computed values of the exact solution. Because of a boundary layer that occurs in the weak-selection limit, the Bernstein polynomial method is more efficient at approximating the rate of evolution in the strong selection region ( $$w \sim 1$$ w ∼ 1 ) (requiring the use of fewer modes to obtain the same level of accuracy) than in the weak selection regime.

Suggested Citation

  • Jiyeon Park & Paul K. Newton, 2024. "Bernstein Polynomial Approximation of Fixation Probability in Finite Population Evolutionary Games," Dynamic Games and Applications, Springer, vol. 14(3), pages 686-696, July.
  • Handle: RePEc:spr:dyngam:v:14:y:2024:i:3:d:10.1007_s13235-023-00509-8
    DOI: 10.1007/s13235-023-00509-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13235-023-00509-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13235-023-00509-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin A. Nowak & Akira Sasaki & Christine Taylor & Drew Fudenberg, 2004. "Emergence of cooperation and evolutionary stability in finite populations," Nature, Nature, vol. 428(6983), pages 646-650, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuya Sekiguchi, 2023. "Fixation Probabilities of Strategies for Trimatrix Games and Their Applications to Triadic Conflict," Dynamic Games and Applications, Springer, vol. 13(3), pages 1005-1033, September.
    2. Konrad, Kai A. & Morath, Florian, 2020. "The Volunteer’s Dilemma in Finite Populations," CEPR Discussion Papers 15536, C.E.P.R. Discussion Papers.
    3. M. Kleshnina & K. Kaveh & K. Chatterjee, 2020. "The role of behavioural plasticity in finite vs infinite populations," Papers 2009.13160, arXiv.org.
    4. Martina Testori & Hedwig Eisenbarth & Rebecca B Hoyle, 2022. "Selfish risk-seeking can provide an evolutionary advantage in a conditional public goods game," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-18, January.
    5. Huang, Keke & Liu, Yishun & Zhang, Yichi & Yang, Chunhua & Wang, Zhen, 2018. "Understanding cooperative behavior of agents with heterogeneous perceptions in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 234-240.
    6. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    7. Chaitanya S. Gokhale & Joseph Bulbulia & Marcus Frean, 2022. "Collective narratives catalyse cooperation," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-9, December.
    8. Peng Liu & Haoxiang Xia, 2015. "Structure and evolution of co-authorship network in an interdisciplinary research field," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 101-134, April.
    9. John T. Scholz & Cheng‐Lung Wang, 2009. "Learning to Cooperate: Learning Networks and the Problem of Altruism," American Journal of Political Science, John Wiley & Sons, vol. 53(3), pages 572-587, July.
    10. Zhao, Zhengwu & Zhang, Chunyan, 2023. "The mechanisms of labor division from the perspective of task urgency and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    11. Lessard, Sabin & Lahaie, Philippe, 2009. "Fixation probability with multiple alleles and projected average allelic effect on selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 266-277.
    12. Zhang, Boyu & An, Xinmiao & Dong, Yali, 2021. "Conditional cooperator enhances institutional punishment in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    13. Bin Wu & Julián García & Christoph Hauert & Arne Traulsen, 2013. "Extrapolating Weak Selection in Evolutionary Games," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-7, December.
    14. Christopher Lee & Marc Harper & Dashiell Fryer, 2015. "The Art of War: Beyond Memory-one Strategies in Population Games," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-16, March.
    15. Ania, Ana B. & Wagener, Andreas, 2009. "The Open Method of Coordination (OMC) as an Evolutionary Learning Process," Hannover Economic Papers (HEP) dp-416, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Yan, Fang & Hou, Xiaorong & Tian, Tingting & Chen, Xiaojie, 2023. "Nonlinear model reference adaptive control approach for governance of the commons in a feedback-evolving game," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Marta C. Couto & Saptarshi Pal, 2023. "Introspection Dynamics in Asymmetric Multiplayer Games," Dynamic Games and Applications, Springer, vol. 13(4), pages 1256-1285, December.
    18. Xavier Vilà, 2009. "A Model-to-Model Analysis of the Repeated Prisoners’ Dilemma: Genetic Algorithms vs. Evolutionary Dynamics," Lecture Notes in Economics and Mathematical Systems, in: Cesáreo Hernández & Marta Posada & Adolfo López-Paredes (ed.), Artificial Economics, chapter 0, pages 237-244, Springer.
    19. Huang, Shaoxu & Liu, Xuesong & Hu, Yuhan & Fu, Xiao, 2023. "The influence of aggressive behavior on cooperation evolution in social dilemma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Wakano, Joe Yuichiro & Ohtsuki, Hisashi & Kobayashi, Yutaka, 2013. "A mathematical description of the inclusive fitness theory," Theoretical Population Biology, Elsevier, vol. 84(C), pages 46-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:dyngam:v:14:y:2024:i:3:d:10.1007_s13235-023-00509-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.