IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v91y2025i2d10.1007_s10589-024-00584-6.html
   My bibliography  Save this article

Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming

Author

Listed:
  • Jacek Gondzio

    (University of Edinburgh)

  • Francisco N. C. Sobral

    (State University of Maringá)

Abstract

Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.

Suggested Citation

  • Jacek Gondzio & Francisco N. C. Sobral, 2025. "Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming," Computational Optimization and Applications, Springer, vol. 91(2), pages 649-681, June.
  • Handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00584-6
    DOI: 10.1007/s10589-024-00584-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00584-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00584-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00584-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.