IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v91y2025i2d10.1007_s10589-024-00584-6.html
   My bibliography  Save this article

Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming

Author

Listed:
  • Jacek Gondzio

    (University of Edinburgh)

  • Francisco N. C. Sobral

    (State University of Maringá)

Abstract

Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.

Suggested Citation

  • Jacek Gondzio & Francisco N. C. Sobral, 2025. "Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming," Computational Optimization and Applications, Springer, vol. 91(2), pages 649-681, June.
  • Handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00584-6
    DOI: 10.1007/s10589-024-00584-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-024-00584-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-024-00584-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Gondzio, Jacek, 1995. "HOPDM (version 2.12) -- A fast LP solver based on a primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 85(1), pages 221-225, August.
    2. Benedetta Morini & Valeria Simoncini & Mattia Tani, 2017. "A comparison of reduced and unreduced KKT systems arising from interior point methods," Computational Optimization and Applications, Springer, vol. 68(1), pages 1-27, September.
    3. Jacek Gondzio & Andreas Grothey, 2009. "Exploiting structure in parallel implementation of interior point methods for optimization," Computational Management Science, Springer, vol. 6(2), pages 135-160, May.
    4. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    5. David Ek & Anders Forsgren, 2023. "A structured modified Newton approach for solving systems of nonlinear equations arising in interior-point methods for quadratic programming," Computational Optimization and Applications, Springer, vol. 86(1), pages 1-48, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Gondzio & F. N. C. Sobral, 2019. "Quasi-Newton approaches to interior point methods for quadratic problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 93-120, September.
    2. Cosmin Petra & Mihai Anitescu, 2012. "A preconditioning technique for Schur complement systems arising in stochastic optimization," Computational Optimization and Applications, Springer, vol. 52(2), pages 315-344, June.
    3. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    4. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    5. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    6. Rehfeldt, Daniel & Hobbie, Hannes & Schönheit, David & Koch, Thorsten & Möst, Dominik & Gleixner, Ambros, 2022. "A massively parallel interior-point solver for LPs with generalized arrowhead structure, and applications to energy system models," European Journal of Operational Research, Elsevier, vol. 296(1), pages 60-71.
    7. Yiran Cui & Keiichi Morikuni & Takashi Tsuchiya & Ken Hayami, 2019. "Implementation of interior-point methods for LP based on Krylov subspace iterative solvers with inner-iteration preconditioning," Computational Optimization and Applications, Springer, vol. 74(1), pages 143-176, September.
    8. Cosmin G. Petra & Florian A. Potra, 2019. "A homogeneous model for monotone mixed horizontal linear complementarity problems," Computational Optimization and Applications, Springer, vol. 72(1), pages 241-267, January.
    9. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    10. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    11. Stojkovic, Nebojsa V. & Stanimirovic, Predrag S., 2001. "Two direct methods in linear programming," European Journal of Operational Research, Elsevier, vol. 131(2), pages 417-439, June.
    12. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    13. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    14. Peter Kall & János Mayer, 2006. "Some insights into the solution algorithms for SLP problems," Annals of Operations Research, Springer, vol. 142(1), pages 147-164, February.
    15. Jacek Gondzio & Roy Kouwenberg, 2001. "High-Performance Computing for Asset-Liability Management," Operations Research, INFORMS, vol. 49(6), pages 879-891, December.
    16. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    17. Michaël Allouche & Emmanuel Gobet & Clara Lage & Edwin Mangin, 2024. "Structured dictionary learning of rating migration matrices for credit risk modeling," Computational Statistics, Springer, vol. 39(6), pages 3431-3456, September.
    18. repec:hal:wpaper:hal-03715954 is not listed on IDEAS
    19. Tonbari, Mohamed El & Ahmed, Shabbir, 2023. "Consensus-based Dantzig-Wolfe decomposition," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1441-1456.
    20. Kypreos, Socrates, 2005. "Modeling experience curves in MERGE (model for evaluating regional and global effects)," Energy, Elsevier, vol. 30(14), pages 2721-2737.
    21. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:91:y:2025:i:2:d:10.1007_s10589-024-00584-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.