IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v91y2025i1d10.1007_s10589-025-00661-4.html
   My bibliography  Save this article

Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty

Author

Listed:
  • Shen Peng

    (Xidian University
    KTH Royal Institute of Technology)

  • Gianpiero Canessa

    (KTH Royal Institute of Technology)

  • David Ek

    (KTH Royal Institute of Technology)

  • Anders Forsgren

    (KTH Royal Institute of Technology)

Abstract

We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method.

Suggested Citation

  • Shen Peng & Gianpiero Canessa & David Ek & Anders Forsgren, 2025. "Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty," Computational Optimization and Applications, Springer, vol. 91(1), pages 145-171, May.
  • Handle: RePEc:spr:coopap:v:91:y:2025:i:1:d:10.1007_s10589-025-00661-4
    DOI: 10.1007/s10589-025-00661-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-025-00661-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-025-00661-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Forsgren & Tove Odland, 2018. "On exact linesearch quasi-Newton methods for minimizing a quadratic function," Computational Optimization and Applications, Springer, vol. 69(1), pages 225-241, January.
    2. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    3. Brian Irwin & Eldad Haber, 2023. "Secant penalized BFGS: a noise robust quasi-Newton method via penalizing the secant condition," Computational Optimization and Applications, Springer, vol. 84(3), pages 651-702, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    2. Zhuqi Miao & Balabhaskar Balasundaram & Eduardo L. Pasiliao, 2014. "An exact algorithm for the maximum probabilistic clique problem," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 105-120, July.
    3. Lamas, Patricio & Goycoolea, Marcos & Pagnoncelli, Bernardo & Newman, Alexandra, 2024. "A target-time-windows technique for project scheduling under uncertainty," European Journal of Operational Research, Elsevier, vol. 314(2), pages 792-806.
    4. Hoang Tran & Qiang Du & Guannan Zhang, 2025. "Convergence analysis for a nonlocal gradient descent method via directional Gaussian smoothing," Computational Optimization and Applications, Springer, vol. 90(2), pages 481-513, March.
    5. Emelogu, Adindu & Chowdhury, Sudipta & Marufuzzaman, Mohammad & Bian, Linkan & Eksioglu, Burak, 2016. "An enhanced sample average approximation method for stochastic optimization," International Journal of Production Economics, Elsevier, vol. 182(C), pages 230-252.
    6. G. Pantuso & L. M. Hvattum, 2021. "Maximizing performance with an eye on the finances: a chance-constrained model for football transfer market decisions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 583-611, July.
    7. Francesca Maggioni & Fabrizio Dabbene & Georg Ch. Pflug, 2025. "Sampling methods for multi-stage robust optimization problems," Annals of Operations Research, Springer, vol. 347(3), pages 1385-1423, April.
    8. Jianqiang Cheng & Richard Li-Yang Chen & Habib N. Najm & Ali Pinar & Cosmin Safta & Jean-Paul Watson, 2018. "Chance-constrained economic dispatch with renewable energy and storage," Computational Optimization and Applications, Springer, vol. 70(2), pages 479-502, June.
    9. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    10. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    11. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    12. Chen, Zhen & Archibald, Thomas W., 2024. "Maximizing the survival probability in a cash flow inventory problem with a joint service level constraint," International Journal of Production Economics, Elsevier, vol. 270(C).
    13. Hu, Shaolong & Dong, Zhijie Sasha & Dai, Rui, 2024. "A machine learning based sample average approximation for supplier selection with option contract in humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    14. Wissam AlAli & c{C}au{g}{i}n Ararat, 2024. "Systemic values-at-risk and their sample-average approximations," Papers 2408.08511, arXiv.org.
    15. Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
    16. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    17. Ming Liu & Yueyu Ding & Lihua Sun & Runchun Zhang & Yue Dong & Zihan Zhao & Yiting Wang & Chaoran Liu, 2023. "Green Airline-Fleet Assignment with Uncertain Passenger Demand and Fuel Price," Sustainability, MDPI, vol. 15(2), pages 1-22, January.
    18. Yi Zhao & Qingwan Xue & Xi Zhang, 2018. "Stochastic Empty Container Repositioning Problem with CO 2 Emission Considerations for an Intermodal Transportation System," Sustainability, MDPI, vol. 10(11), pages 1-24, November.
    19. I. Bremer & R. Henrion & A. Möller, 2015. "Probabilistic constraints via SQP solver: application to a renewable energy management problem," Computational Management Science, Springer, vol. 12(3), pages 435-459, July.
    20. Ebenezer Fiifi Emire Atta Mills & Bo Yu & Kailin Zeng, 2019. "Satisfying Bank Capital Requirements: A Robustness Approach in a Modified Roy Safety-First Framework," Mathematics, MDPI, vol. 7(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:91:y:2025:i:1:d:10.1007_s10589-025-00661-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.