IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v87y2024i1d10.1007_s10589-023-00514-y.html
   My bibliography  Save this article

An easily computable upper bound on the Hoffman constant for homogeneous inequality systems

Author

Listed:
  • Javier F. Peña

    (Carnegie Mellon University)

Abstract

Let $$A\in {\mathbb R}^{m\times n}\setminus \{0\}$$ A ∈ R m × n \ { 0 } and $$P:=\{x:Ax\le 0\}$$ P : = { x : A x ≤ 0 } . This paper provides a procedure to compute an upper bound on the following homogeneous Hoffman constant $$\begin{aligned} H_0(A):= \sup _{u\in {\mathbb R}^n \setminus P} \frac{{{\,\textrm{dist}\,}}(u,P)}{{{\,\textrm{dist}\,}}(Au, {\mathbb R}^m_-)}. \end{aligned}$$ H 0 ( A ) : = sup u ∈ R n \ P dist ( u , P ) dist ( A u , R - m ) . In sharp contrast to the intractability of computing more general Hoffman constants, the procedure described in this paper is entirely tractable and easily implementable.

Suggested Citation

  • Javier F. Peña, 2024. "An easily computable upper bound on the Hoffman constant for homogeneous inequality systems," Computational Optimization and Applications, Springer, vol. 87(1), pages 323-335, January.
  • Handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00514-y
    DOI: 10.1007/s10589-023-00514-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00514-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00514-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Leventhal & A. S. Lewis, 2010. "Randomized Methods for Linear Constraints: Convergence Rates and Conditioning," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 641-654, August.
    2. Michael J. Todd, 1990. "A Dantzig-Wolfe-Like Variant of Karmarkar's Interior-Point Linear Programming Algorithm," Operations Research, INFORMS, vol. 38(6), pages 1006-1018, December.
    3. Stephen M. Robinson, 1976. "Regularity and Stability for Convex Multivalued Functions," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 130-143, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holder, A.G. & Sturm, J.F. & Zhang, S., 1998. "Analytic central path, sensitivity analysis and parametric linear programming," Econometric Institute Research Papers EI 9801, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. P. Q. Khanh & N. M. Tung, 2015. "Second-Order Optimality Conditions with the Envelope-Like Effect for Set-Valued Optimization," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 68-90, October.
    3. Chen, Jia-Qi & Huang, Zheng-Da, 2020. "On the error estimate of the randomized double block Kaczmarz method," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    4. Zhang, S., 1998. "Global error bounds for convex conic problems," Econometric Institute Research Papers EI 9830, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Florent Nacry & Vo Anh Thuong Nguyen & Juliette Venel, 2024. "Metric Subregularity and $$\omega (\cdot )$$ ω ( · ) -Normal Regularity Properties," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1439-1470, November.
    6. Dennis Cheung & Felipe Cucker & Javier Peña, 2003. "Unifying Condition Numbers for Linear Programming," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 609-624, November.
    7. Nguyen Minh Tung & Nguyen Xuan Duy Bao, 2023. "New Set-Valued Directional Derivatives: Calculus and Optimality Conditions," Journal of Optimization Theory and Applications, Springer, vol. 197(2), pages 411-437, May.
    8. A. S. Lewis, 2004. "The Structured Distance to Ill-Posedness for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 776-785, November.
    9. Kung Fu Ng & Xi Yin Zheng, 2004. "Characterizations of Error Bounds for Convex Multifunctions on Banach Spaces," Mathematics of Operations Research, INFORMS, vol. 29(1), pages 45-63, February.
    10. C. Zălinescu, 2003. "A Nonlinear Extension of Hoffman's Error Bounds for Linear Inequalities," Mathematics of Operations Research, INFORMS, vol. 28(3), pages 524-532, August.
    11. Phan Quoc Khanh & Nguyen Minh Tung, 2016. "Second-Order Conditions for Open-Cone Minimizers and Firm Minimizers in Set-Valued Optimization Subject to Mixed Constraints," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 45-69, October.
    12. Qin Wang & Weiguo Li & Wendi Bao & Feiyu Zhang, 2022. "Accelerated Randomized Coordinate Descent for Solving Linear Systems," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    13. M. V. Dolgopolik, 2023. "DC semidefinite programming and cone constrained DC optimization II: local search methods," Computational Optimization and Applications, Springer, vol. 85(3), pages 993-1031, July.
    14. J.F. Sturm & S. Zhang, 1998. "On Sensitivity of Central Solutions in Semidefinite Programming," Tinbergen Institute Discussion Papers 98-040/4, Tinbergen Institute.
    15. Mengdi Wang & Dimitri P. Bertsekas, 2014. "Stabilization of Stochastic Iterative Methods for Singular and Nearly Singular Linear Systems," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 1-30, February.
    16. G. Kassay & J. Kolumban, 2000. "Multivalued Parametric Variational Inequalities with α-Pseudomonotone Maps," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 35-50, October.
    17. Honggang Zhang & Zhiyuan Liu & Yicheng Zhang & Weijie Chen & Chenyang Zhang, 2024. "A Distributed Computing Method Integrating Improved Gradient Projection for Solving Stochastic Traffic Equilibrium Problem," Networks and Spatial Economics, Springer, vol. 24(2), pages 361-381, June.
    18. A.G. Holder & J.F. Sturm & S. Zhang, 1998. "Analytic Central Path, Sensitivity Analysis and Parametric Linear Programming," Tinbergen Institute Discussion Papers 98-003/4, Tinbergen Institute.
    19. Leandro Farias Maia & David Huckleberry Gutman & Ryan Christopher Hughes, 2024. "The Inexact Cyclic Block Proximal Gradient Method and Properties of Inexact Proximal Maps," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 668-698, May.
    20. Gürkan, G. & Ozge, A.Y., 1996. "Sample-Path Optimization of Buffer Allocations in a Tandem Queue - Part I : Theoretical Issues," Other publications TiSEM 77da022b-635b-46fd-bf4a-f, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:87:y:2024:i:1:d:10.1007_s10589-023-00514-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.