IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v201y2024i2d10.1007_s10957-024-02404-7.html
   My bibliography  Save this article

The Inexact Cyclic Block Proximal Gradient Method and Properties of Inexact Proximal Maps

Author

Listed:
  • Leandro Farias Maia

    (Texas A &M University)

  • David Huckleberry Gutman

    (Texas A &M University)

  • Ryan Christopher Hughes

    (U.S. Patent and Trademark Office
    Addx Corporation)

Abstract

This paper expands the cyclic block proximal gradient method for block separable composite minimization by allowing for inexactly computed gradients and pre-conditioned proximal maps. The resultant algorithm, the inexact cyclic block proximal gradient (I-CBPG) method, shares the same convergence rate as its exactly computed analogue provided the allowable errors decrease sufficiently quickly or are pre-selected to be sufficiently small. We provide numerical experiments that showcase the practical computational advantage of I-CBPG for certain fixed tolerances of approximation error and for a dynamically decreasing error tolerance regime in particular. Our experimental results indicate that cyclic methods with dynamically decreasing error tolerance regimes can actually outpace their randomized siblings with fixed error tolerance regimes. We establish a tight relationship between inexact pre-conditioned proximal map evaluations and $$\delta $$ δ -subgradients in our $$(\delta ,B)$$ ( δ , B ) -Second Prox theorem. This theorem forms the foundation of our convergence analysis and enables us to show that inexact gradient computations can be subsumed within a single unifying framework.

Suggested Citation

  • Leandro Farias Maia & David Huckleberry Gutman & Ryan Christopher Hughes, 2024. "The Inexact Cyclic Block Proximal Gradient Method and Properties of Inexact Proximal Maps," Journal of Optimization Theory and Applications, Springer, vol. 201(2), pages 668-698, May.
  • Handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02404-7
    DOI: 10.1007/s10957-024-02404-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02404-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02404-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haihao Lu & Robert M. Freund & Yurii Nesterov, 2018. "Relatively smooth convex optimization by first-order methods, and applications," LIDAM Reprints CORE 2965, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. D. Leventhal & A. S. Lewis, 2010. "Randomized Methods for Linear Constraints: Convergence Rates and Conditioning," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 641-654, August.
    3. Ron Shefi & Marc Teboulle, 2016. "On the rate of convergence of the proximal alternating linearized minimization algorithm for convex problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 27-46, February.
    4. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2013. "Intermediate gradient methods for smooth convex problems with inexact oracle," LIDAM Discussion Papers CORE 2013017, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.
    7. NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Pavel Dvurechensky & Alexander Gasnikov, 2016. "Stochastic Intermediate Gradient Method for Convex Problems with Stochastic Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 171(1), pages 121-145, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
    2. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    3. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    4. Alkousa, Mohammad & Stonyakin, Fedor & Gasnikov, Alexander & Abdo, Asmaa & Alcheikh, Mohammad, 2024. "Higher degree inexact model for optimization problems," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    5. Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.
    6. TAYLOR, Adrien B. & HENDRICKX, Julien M. & François GLINEUR, 2016. "Exact worst-case performance of first-order methods for composite convex optimization," LIDAM Discussion Papers CORE 2016052, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    7. Fedor Stonyakin & Alexander Gasnikov & Pavel Dvurechensky & Alexander Titov & Mohammad Alkousa, 2022. "Generalized Mirror Prox Algorithm for Monotone Variational Inequalities: Universality and Inexact Oracle," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 988-1013, September.
    8. Abbaszadehpeivasti, Hadi, 2024. "Performance analysis of optimization methods for machine learning," Other publications TiSEM 3050a62d-1a1f-494e-99ef-7, Tilburg University, School of Economics and Management.
    9. Du, Kui, 2024. "Regularized randomized iterative algorithms for factorized linear systems," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    10. Flavia Chorobura & Ion Necoara, 2024. "Coordinate descent methods beyond smoothness and separability," Computational Optimization and Applications, Springer, vol. 88(1), pages 107-149, May.
    11. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.
    12. Qin Wang & Weiguo Li & Wendi Bao & Feiyu Zhang, 2022. "Accelerated Randomized Coordinate Descent for Solving Linear Systems," Mathematics, MDPI, vol. 10(22), pages 1-20, November.
    13. Adrien B. Taylor & Julien M. Hendrickx & François Glineur, 2018. "Exact Worst-Case Convergence Rates of the Proximal Gradient Method for Composite Convex Minimization," Journal of Optimization Theory and Applications, Springer, vol. 178(2), pages 455-476, August.
    14. Majid Jahani & Naga Venkata C. Gudapati & Chenxin Ma & Rachael Tappenden & Martin Takáč, 2021. "Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences," Computational Optimization and Applications, Springer, vol. 79(2), pages 369-404, June.
    15. Olivier Fercoq & Zheng Qu, 2020. "Restarting the accelerated coordinate descent method with a rough strong convexity estimate," Computational Optimization and Applications, Springer, vol. 75(1), pages 63-91, January.
    16. Quoc Tran-Dinh, 2019. "Proximal alternating penalty algorithms for nonsmooth constrained convex optimization," Computational Optimization and Applications, Springer, vol. 72(1), pages 1-43, January.
    17. Ruoyu Sun & Zhi-Quan Luo & Yinyu Ye, 2020. "On the Efficiency of Random Permutation for ADMM and Coordinate Descent," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 233-271, February.
    18. Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
    19. Tianxiao Sun & Ion Necoara & Quoc Tran-Dinh, 2020. "Composite convex optimization with global and local inexact oracles," Computational Optimization and Applications, Springer, vol. 76(1), pages 69-124, May.
    20. R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:201:y:2024:i:2:d:10.1007_s10957-024-02404-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.