IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v60y2015i3p587-608.html
   My bibliography  Save this article

Novel update techniques for the revised simplex method

Author

Listed:
  • Qi Huangfu
  • J. Hall

    ()

Abstract

This paper introduces three novel techniques for updating the invertible representation of the basis matrix when solving practical sparse linear programming problems using a high performance implementation of the dual revised simplex method, being of particular value when suboptimization is used. Two are variants of the product form update and the other permits multiple Forrest–Tomlin updates to be performed. Computational results show that one of the product form variants is significantly more efficient than the traditional approach, with its performance approaching that of the Forrest–Tomlin update for some problems. The other is less efficient, but valuable in the context of the dual revised simplex method with suboptimization. Results show that the multiple Forrest–Tomlin updates are performed with no loss of serial efficiency. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Qi Huangfu & J. Hall, 2015. "Novel update techniques for the revised simplex method," Computational Optimization and Applications, Springer, vol. 60(3), pages 587-608, April.
  • Handle: RePEc:spr:coopap:v:60:y:2015:i:3:p:587-608
    DOI: 10.1007/s10589-014-9689-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-014-9689-1
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:spr:mathme:v:87:y:2018:i:1:d:10.1007_s00186-017-0610-4 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:60:y:2015:i:3:p:587-608. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.