IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i3d10.1007_s00180-024-01548-4.html
   My bibliography  Save this article

Robust matrix factor analysis method with adaptive parameter adjustment using Cauchy weighting

Author

Listed:
  • Junchen Li

    (Chongqing Technology and Business University)

Abstract

In recent years, high-dimensional matrix factor models have been widely applied in various fields. However, there are few methods that effectively handle heavy-tailed data. To address this problem, we introduced a smooth Cauchy loss function and established an optimization objective through norm minimization, deriving a Cauchy version of the weighted iterative estimation method. Unlike the Huber loss weighted estimation method, the weight calculation in this method is a smooth function rather than a piecewise function. It also considers the need to update parameters in the Cauchy loss function with each iteration during estimation. Ultimately, we propose a weighted estimation method with adaptive parameter adjustment. Subsequently, this paper analyzes the theoretical properties of the method, proving that it has a fast convergence rate. Through data simulation, our method demonstrates significant advantages. Thus, it can serve as a better alternative to other existing estimation methods. Finally, we analyzed a dataset of regional population movements between cities, demonstrating that our proposed method offers estimations with excellent interpretability compared to other methods.

Suggested Citation

  • Junchen Li, 2025. "Robust matrix factor analysis method with adaptive parameter adjustment using Cauchy weighting," Computational Statistics, Springer, vol. 40(3), pages 1597-1620, March.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01548-4
    DOI: 10.1007/s00180-024-01548-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01548-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01548-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    2. Yong He & Xinbing Kong & Long Yu & Xinsheng Zhang & Changwei Zhao, 2024. "Matrix Factor Analysis: From Least Squares to Iterative Projection," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 322-334, January.
    3. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    4. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    5. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    6. Hua Zhou & Lexin Li, 2014. "Regularized matrix regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 463-483, March.
    7. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.
    8. Elynn Y. Chen & Rong Chen, 2019. "Modeling Dynamic Transport Network with Matrix Factor Models: with an Application to International Trade Flow," Papers 1901.00769, arXiv.org.
    9. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    10. Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
    11. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuefeng Han & Rong Chen & Dan Yang & Cun-Hui Zhang, 2020. "Tensor Factor Model Estimation by Iterative Projection," Papers 2006.02611, arXiv.org, revised Jul 2024.
    2. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.
    3. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.
    4. Yuefeng Han & Rong Chen & Cun-Hui Zhang, 2020. "Rank Determination in Tensor Factor Model," Papers 2011.07131, arXiv.org, revised May 2022.
    5. Xialu Liu & John Guerard & Rong Chen & Ruey Tsay, 2024. "Improving Estimation of Portfolio Risk Using New Statistical Factors," Papers 2409.17182, arXiv.org.
    6. Zhiyun Fan & Xiaoyu Zhang & Mingyang Chen & Di Wang, 2025. "Matrix Time Series Modeling: A Hybrid Framework Combining Autoregression and Common Factors," Papers 2503.05340, arXiv.org.
    7. Zhaoxing Gao & Ruey S. Tsay, 2020. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Papers 2011.09029, arXiv.org.
    8. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    9. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    10. Chang, Jinyuan & Zhang, Henry & Yang, Lin & Yao, Qiwei, 2023. "Modelling matrix time series via a tensor CP-decomposition," LSE Research Online Documents on Economics 117644, London School of Economics and Political Science, LSE Library.
    11. Simon Beyeler & Sylvia Kaufmann, 2016. "Factor augmented VAR revisited - A sparse dynamic factor model approach," Working Papers 16.08, Swiss National Bank, Study Center Gerzensee.
    12. Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
    13. Yin Xia & Lexin Li, 2017. "Hypothesis testing of matrix graph model with application to brain connectivity analysis," Biometrics, The International Biometric Society, vol. 73(3), pages 780-791, September.
    14. Matteo Barigozzi & Luca Trapin, 2025. "Estimation of large approximate dynamic matrix factor models based on the EM algorithm and Kalman filtering," Papers 2502.04112, arXiv.org, revised May 2025.
    15. Yuefeng Han & Dan Yang & Cun-Hui Zhang & Rong Chen, 2021. "CP Factor Model for Dynamic Tensors," Papers 2110.15517, arXiv.org, revised Apr 2024.
    16. Zhaoxing Gao & Ruey S. Tsay, 2021. "Divide-and-Conquer: A Distributed Hierarchical Factor Approach to Modeling Large-Scale Time Series Data," Papers 2103.14626, arXiv.org.
    17. He, Yong & Kong, Xinbing & Trapani, Lorenzo & Yu, Long, 2023. "One-way or two-way factor model for matrix sequences?," Journal of Econometrics, Elsevier, vol. 235(2), pages 1981-2004.
    18. Li, Yan & Gao, Zhigen & Huang, Wei & Guo, Jianhua, 2023. "Matrix-variate data analysis by two-way factor model with replicated observations," Statistics & Probability Letters, Elsevier, vol. 202(C).
    19. Gao, Zhaoxing & Tsay, Ruey S., 2023. "A Two-Way Transformed Factor Model for Matrix-Variate Time Series," Econometrics and Statistics, Elsevier, vol. 27(C), pages 83-101.
    20. Yu, Long & He, Yong & Kong, Xinbing & Zhang, Xinsheng, 2022. "Projected estimation for large-dimensional matrix factor models," Journal of Econometrics, Elsevier, vol. 229(1), pages 201-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:3:d:10.1007_s00180-024-01548-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.