IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v38y2023i4d10.1007_s00180-022-01283-8.html
   My bibliography  Save this article

Bayesian variable selection using Knockoffs with applications to genomics

Author

Listed:
  • Jurel K. Yap

    (University of the Philippines Diliman
    Ateneo de Manila University)

  • Iris Ivy M. Gauran

    (King Abdullah University of Science and Technology)

Abstract

Given the costliness of HIV drug therapy research, it is important not only to maximize true positive rate (TPR) by identifying which genetic markers are related to drug resistance, but also to minimize false discovery rate (FDR) by reducing the number of incorrect markers unrelated to drug resistance. In this study, we propose a multiple testing procedure that unifies key concepts in computational statistics, namely Model-free Knockoffs, Bayesian variable selection, and the local false discovery rate. We develop an algorithm that utilizes the augmented data-Knockoff matrix and implement Bayesian Lasso. We then identify signals using test statistics based on Markov Chain Monte Carlo outputs and local false discovery rate. We test our proposed methods against non-bayesian methods such as Benjamini–Hochberg (BHq) and Lasso regression in terms TPR and FDR. Using numerical studies, we show the proposed method yields lower FDR compared to BHq and Lasso for certain cases, such as for low and equi-dimensional cases. We also discuss an application to an HIV-1 data set, which aims to be applied analyzing genetic markers linked to drug resistant HIV in the Philippines in future work.

Suggested Citation

  • Jurel K. Yap & Iris Ivy M. Gauran, 2023. "Bayesian variable selection using Knockoffs with applications to genomics," Computational Statistics, Springer, vol. 38(4), pages 1771-1790, December.
  • Handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01283-8
    DOI: 10.1007/s00180-022-01283-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-022-01283-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-022-01283-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:dau:papers:123456789/3549 is not listed on IDEAS
    2. Jakub Bijak & John Bryant, 2016. "Bayesian demography 250 years after Bayes," Population Studies, Taylor & Francis Journals, vol. 70(1), pages 1-19, March.
    3. Navid Feroze & Muhammad Aslam, 2019. "Approximate Bayesian analysis of doubly censored samples from mixture of two Weibull distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(11), pages 2862-2878, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afua Durowaa-Boateng & Anne Goujon & Dilek Yildiz, 2023. "A Bayesian model for the reconstruction of education- and age-specific fertility rates: An application to African and Latin American countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 49(31), pages 809-848.
    2. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    3. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    4. Bijak Jakub & Bryant Johan & Gołata Elżbieta & Smallwood Steve, 2021. "Preface," Journal of Official Statistics, Sciendo, vol. 37(3), pages 533-541, September.
    5. Rachel S. Franklin & Jacques Poot, 2021. "Guest Editorial: Spatial demography in regional science," Journal of Geographical Systems, Springer, vol. 23(2), pages 139-141, April.
    6. Beata Osiewalska, 2017. "Childlessness and fertility by couples' educational gender (in)equality in Austria, Bulgaria, and France," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(12), pages 325-362.
    7. Joanne Ellison & Erengul Dodd & Jonathan J. Forster, 2020. "Forecasting of cohort fertility under a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 829-856, June.
    8. Ameer Dharamshi & Magali Barbieri & Monica Alexander & Celeste Winant, 2025. "Jointly estimating subnational mortality for multiple populations," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 52(3), pages 71-110.
    9. Monica Alexander & Leontine Alkema, 2018. "Global estimation of neonatal mortality using a Bayesian hierarchical splines regression model," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(15), pages 335-372.
    10. Monica Alexander & Adrian E. Raftery, 2024. "Developing and implementing the UN's probabilistic population projections as a milestone for Bayesian demography: An interview with Adrian Raftery," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 51(1), pages 1-16.
    11. Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
    12. Nico Keilman, 2018. "Probabilistic demographic forecasts," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 16(1), pages 025-035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:38:y:2023:i:4:d:10.1007_s00180-022-01283-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.