IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-020-00954-8.html
   My bibliography  Save this article

Using tours to visually investigate properties of new projection pursuit indexes with application to problems in physics

Author

Listed:
  • Ursula Laa

    (Monash University
    Monash University)

  • Dianne Cook

    (Monash University)

Abstract

Projection pursuit is used to find interesting low-dimensional projections of high-dimensional data by optimizing an index over all possible projections. Most indexes have been developed to detect departure from known distributions, such as normality, or to find separations between known groups. Here, we are interested in finding projections revealing potentially complex bivariate patterns, using new indexes constructed from scagnostics and a maximum information coefficient, with a purpose to detect unusual relationships between model parameters describing physics phenomena. The performance of these indexes is examined with respect to ideal behaviour, using simulated data, and then applied to problems from gravitational wave astronomy. The implementation builds upon the projection pursuit tools available in the R package, tourr, with indexes constructed from code in the R packages, binostics, minerva and mbgraphic.

Suggested Citation

  • Ursula Laa & Dianne Cook, 2020. "Using tours to visually investigate properties of new projection pursuit indexes with application to problems in physics," Computational Statistics, Springer, vol. 35(3), pages 1171-1205, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00954-8
    DOI: 10.1007/s00180-020-00954-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00954-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00954-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ju Ahn & Heike Hofmann & Dianne Cook, 2003. "A Projection Pursuit Method on the multidimensional squared Contingency Table," Computational Statistics, Springer, vol. 18(3), pages 605-626, September.
    2. Lee, Eun-Kyung & Cook, Dianne & Klinke, Sigbert & Lumley, Thomas, 2005. "Projection pursuit for exploratory supervised classification," SFB 649 Discussion Papers 2005-026, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    3. Huang, Bei & Cook, Dianne & Wickham, Hadley, 2012. "tourrGui: A gWidgets GUI for the Tour to Explore High-Dimensional Data Using Low-Dimensional Projections," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 49(i06).
    4. Loperfido, Nicola, 2018. "Skewness-based projection pursuit: A computational approach," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 42-57.
    5. repec:hum:wpaper:sfb649dp2005-026 is not listed on IDEAS
    6. F. Ferraty & A. Goia & E. Salinelli & P. Vieu, 2013. "Functional projection pursuit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 293-320, June.
    7. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    8. Posse, Christian, 1995. "Projection pursuit exploratory data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 20(6), pages 669-687, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ursula Laa & Dianne Cook & Andreas Buja & German Valencia, 2020. "Hole or grain? A Section Pursuit Index for Finding Hidden Structure in Multiple Dimensions," Monash Econometrics and Business Statistics Working Papers 17/20, Monash University, Department of Econometrics and Business Statistics.
    2. Nicola Loperfido, 2023. "Kurtosis removal for data pre-processing," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 239-267, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuelong Su & Yucheng Liu & Yong Zhou & Jiakang Liu, 2024. "Research on the Coupling and Coordination of Land Ecological Security and High-Quality Agricultural Development in the Han River Basin," Land, MDPI, vol. 13(10), pages 1-28, October.
    2. Chunming Zhang & Jimin Ye & Xiaomei Wang, 2023. "A Computational Perspective on Projection Pursuit in High Dimensions: Feasible or Infeasible Feature Extraction," International Statistical Review, International Statistical Institute, vol. 91(1), pages 140-161, April.
    3. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2020. "Model uncertainty, nonlinearities and out-of-sample comparison: evidence from international technology diffusion," Working Papers hal-02790523, HAL.
    4. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    5. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    6. Dabo-Niang, S. & Guillas, S. & Ternynck, C., 2016. "Efficiency in multivariate functional nonparametric models with autoregressive errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 168-182.
    7. Chenyin Gao & Katherine Jenny Thompson & Jae Kwang Kim & Shu Yang, 2022. "Nearest neighbour ratio imputation with incomplete multinomial outcome in survey sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1903-1930, October.
    8. Simon N. Wood, 2020. "Inference and computation with generalized additive models and their extensions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 307-339, June.
    9. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
    10. Zheng Lu & Dongxing Wu & Shasha Meng & Xiaokang Kou & Lipeng Jiao, 2025. "Exploration of Spatiotemporal Covariation in Vegetation–Groundwater Relationships: A Case Study in an Endorheic Inland River Basin," Land, MDPI, vol. 14(4), pages 1-29, March.
    11. M. D. Ruiz-Medina & D. Miranda & R. M. Espejo, 2019. "Dynamical multiple regression in function spaces, under kernel regressors, with ARH(1) errors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 943-968, September.
    12. Paul Ghelasi & Florian Ziel, 2024. "From day-ahead to mid and long-term horizons with econometric electricity price forecasting models," Papers 2406.00326, arXiv.org, revised Aug 2024.
    13. Valtiala, Juho & Niskanen, Olli & Torvinen, Mikael & Riekkinen, Kirsikka & Suokannas, Antti, 2023. "The relationship between agricultural land parcel size and cultivation costs," Land Use Policy, Elsevier, vol. 131(C).
    14. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
    15. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    16. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    17. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    18. Adragni, Kofi Placid & Cook, R. Dennis & Wu, Seongho, 2012. "GrassmannOptim: An R Package for Grassmann Manifold Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i05).
    19. Daniel Rojas-Diaz & Alexandra Catano-Lopez & Carlos M. Vélez & Santiago Ortiz & Henry Laniado, 2024. "Confidence sub-contour box: an alternative to traditional confidence intervals," Computational Statistics, Springer, vol. 39(5), pages 2821-2858, July.
    20. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00954-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.