IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i4d10.1007_s00180-017-0765-8.html
   My bibliography  Save this article

Fast derivatives of likelihood functionals for ODE based models using adjoint-state method

Author

Listed:
  • Valdemar Melicher

    (University of Antwerp)

  • Tom Haber

    (Hasselt University)

  • Wim Vanroose

    (University of Antwerp)

Abstract

We consider time series data modeled by ordinary differential equations (ODEs), widespread models in physics, chemistry, biology and science in general. The sensitivity analysis of such dynamical systems usually requires calculation of various derivatives with respect to the model parameters. We employ the adjoint state method (ASM) for efficient computation of the first and the second derivatives of likelihood functionals constrained by ODEs with respect to the parameters of the underlying ODE model. Essentially, the gradient can be computed with a cost (measured by model evaluations) that is independent of the number of the ODE model parameters and the Hessian with a linear cost in the number of the parameters instead of the quadratic one. The sensitivity analysis becomes feasible even if the parametric space is high-dimensional. The main contributions are derivation and rigorous analysis of the ASM in the statistical context, when the discrete data are coupled with the continuous ODE model. Further, we present a highly optimized implementation of the results and its benchmarks on a number of problems. The results are directly applicable in (e.g.) maximum-likelihood estimation or Bayesian sampling of ODE based statistical models, allowing for faster, more stable estimation of parameters of the underlying ODE model.

Suggested Citation

  • Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0765-8
    DOI: 10.1007/s00180-017-0765-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-017-0765-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-017-0765-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    2. Andreas Raue & Marcel Schilling & Julie Bachmann & Andrew Matteson & Max Schelke & Daniel Kaschek & Sabine Hug & Clemens Kreutz & Brian D Harms & Fabian J Theis & Ursula Klingmüller & Jens Timmer, 2013. "Lessons Learned from Quantitative Dynamical Modeling in Systems Biology," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
    2. Jin, Ding & Thube, Sneha Dattatraya & Hedtrich, Johannes & Henning, Christian & Delzeit, Ruth, 2019. "A Baseline Calibration Procedure for CGE models: An Application for DART," Conference papers 333057, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    4. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    5. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    6. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Neveen Ali Eshtewy & Lena Scholz & Andreas Kremling, 2023. "Parameter Estimation for a Kinetic Model of a Cellular System Using Model Order Reduction Method," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    8. Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
    9. Charlotte Baey & Amélie Mathieu & Alexandra Jullien & Samis Trevezas & Paul-Henry Cournède, 2018. "Mixed-Effects Estimation in Dynamic Models of Plant Growth for the Assessment of Inter-individual Variability," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 208-232, June.
    10. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    11. Artz G. Luwanda & Henry G. Mwambi, 2016. "A Nonlinear Mixed-Effects Model for Multivariate Longitudinal Data with Dropout with Application to HIV Disease Dynamics," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 277-294, June.
    12. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:4:d:10.1007_s00180-017-0765-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.