IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010783.html
   My bibliography  Save this article

Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks

Author

Listed:
  • Polina Lakrisenko
  • Paul Stapor
  • Stephan Grein
  • Łukasz Paszkowski
  • Dilan Pathirana
  • Fabian Fröhlich
  • Glenn Terje Lines
  • Daniel Weindl
  • Jan Hasenauer

Abstract

Dynamical models in the form of systems of ordinary differential equations have become a standard tool in systems biology. Many parameters of such models are usually unknown and have to be inferred from experimental data. Gradient-based optimization has proven to be effective for parameter estimation. However, computing gradients becomes increasingly costly for larger models, which are required for capturing the complex interactions of multiple biochemical pathways. Adjoint sensitivity analysis has been pivotal for working with such large models, but methods tailored for steady-state data are currently not available. We propose a new adjoint method for computing gradients, which is applicable if the experimental data include steady-state measurements. The method is based on a reformulation of the backward integration problem to a system of linear algebraic equations. The evaluation of the proposed method using real-world problems shows a speedup of total simulation time by a factor of up to 4.4. Our results demonstrate that the proposed approach can achieve a substantial improvement in computation time, in particular for large-scale models, where computational efficiency is critical.Author summary: Large-scale dynamical models are nowadays widely used for the analysis of complex processes and the integration of large-scale data sets. However, computational cost is often a bottleneck. Here, we propose a new gradient computation method that facilitates the parameterization of large-scale models based on steady-state measurements. The method can be combined with existing gradient computation methods for time-course measurements. Accordingly, it is an essential contribution to the environment of computationally efficient approaches for the study of large-scale screening and omics data, but not tailored to biological applications, and, therefore, also useful beyond the field of computational biology.

Suggested Citation

  • Polina Lakrisenko & Paul Stapor & Stephan Grein & Łukasz Paszkowski & Dilan Pathirana & Fabian Fröhlich & Glenn Terje Lines & Daniel Weindl & Jan Hasenauer, 2023. "Efficient computation of adjoint sensitivities at steady-state in ODE models of biochemical reaction networks," PLOS Computational Biology, Public Library of Science, vol. 19(1), pages 1-19, January.
  • Handle: RePEc:plo:pcbi00:1010783
    DOI: 10.1371/journal.pcbi.1010783
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010783
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010783&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andreas Raue & Marcel Schilling & Julie Bachmann & Andrew Matteson & Max Schelke & Daniel Kaschek & Sabine Hug & Clemens Kreutz & Brian D Harms & Fabian J Theis & Ursula Klingmüller & Jens Timmer, 2013. "Lessons Learned from Quantitative Dynamical Modeling in Systems Biology," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
    2. Jin, Ding & Thube, Sneha Dattatraya & Hedtrich, Johannes & Henning, Christian & Delzeit, Ruth, 2019. "A Baseline Calibration Procedure for CGE models: An Application for DART," Conference papers 333057, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Elba Raimúndez & Simone Keller & Gwen Zwingenberger & Karolin Ebert & Sabine Hug & Fabian J Theis & Dieter Maier & Birgit Luber & Jan Hasenauer, 2020. "Model-based analysis of response and resistance factors of cetuximab treatment in gastric cancer cell lines," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-21, March.
    4. repec:plo:pcbi00:1005234 is not listed on IDEAS
    5. Fabian Fröhlich & Barbara Kaltenbacher & Fabian J Theis & Jan Hasenauer, 2017. "Scalable Parameter Estimation for Genome-Scale Biochemical Reaction Networks," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-18, January.
    6. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. Neveen Ali Eshtewy & Lena Scholz & Andreas Kremling, 2023. "Parameter Estimation for a Kinetic Model of a Cellular System Using Model Order Reduction Method," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    8. Nathaniel J Linden & Boris Kramer & Padmini Rangamani, 2022. "Bayesian parameter estimation for dynamical models in systems biology," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-48, October.
    9. Eivind S Haus & Tormod Drengstig & Kristian Thorsen, 2023. "Structural identifiability of biomolecular controller motifs with and without flow measurements as model output," PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-33, August.
    10. Carlos F Martino & Pablo Jimenez & Max Goldfarb & Ugur G Abdulla, 2023. "Optimization of parameters in coherent spin dynamics of radical pairs in quantum biology," PLOS ONE, Public Library of Science, vol. 18(2), pages 1-17, February.
    11. Fabian Fröhlich & Philipp Thomas & Atefeh Kazeroonian & Fabian J Theis & Ramon Grima & Jan Hasenauer, 2016. "Inference for Stochastic Chemical Kinetics Using Moment Equations and System Size Expansion," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-28, July.
    12. Zijian Wang & Jan Hasenauer & Yannik Schälte, 2024. "Missing data in amortized simulation-based neural posterior estimation," PLOS Computational Biology, Public Library of Science, vol. 20(6), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.