IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v12y2015i1p197-218.html
   My bibliography  Save this article

The maximum ratio clique problem

Author

Listed:
  • Samyukta Sethuraman
  • Sergiy Butenko

Abstract

This paper introduces a fractional version of the classical maximum weight clique problem, the maximum ratio clique problem, which is to find a maximal clique that has the largest ratio of benefit and cost weights associated with the clique’s vertices. NP-completeness of the decision version of the problem is established, and three solution methods are proposed. The results of numerical experiments with standard graph instances, as well as with real-life instances arising in finance and energy systems, are reported. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Samyukta Sethuraman & Sergiy Butenko, 2015. "The maximum ratio clique problem," Computational Management Science, Springer, vol. 12(1), pages 197-218, January.
  • Handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:197-218
    DOI: 10.1007/s10287-013-0197-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0197-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0197-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Tai-Hsi, 1997. "A note on a global approach for general 0-1 fractional programming," European Journal of Operational Research, Elsevier, vol. 101(1), pages 220-223, August.
    2. Oleksii Ursulenko & Sergiy Butenko & Oleg Prokopyev, 2013. "A global optimization algorithm for solving the minimum multiple ratio spanning tree problem," Journal of Global Optimization, Springer, vol. 56(3), pages 1029-1043, July.
    3. Nimrod Megiddo, 1979. "Combinatorial Optimization with Rational Objective Functions," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 414-424, November.
    4. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.
    2. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    3. Alfandari, Laurent & Hassanzadeh, Alborz & Ljubic, Ivana, 2020. "An Exact Method for Assortment Optimization under the Nested Logit Model," ESSEC Working Papers WP2001, ESSEC Research Center, ESSEC Business School, revised 2020.
    4. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan S. Borrero & Colin Gillen & Oleg A. Prokopyev, 2017. "Fractional 0–1 programming: applications and algorithms," Journal of Global Optimization, Springer, vol. 69(1), pages 255-282, September.
    2. Tien Mai & Arunesh Sinha, 2022. "Safe Delivery of Critical Services in Areas with Volatile Security Situation via a Stackelberg Game Approach," Papers 2204.11451, arXiv.org.
    3. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    4. Shaoning Han & Andrés Gómez & Oleg A. Prokopyev, 2022. "Fractional 0–1 programming and submodularity," Journal of Global Optimization, Springer, vol. 84(1), pages 77-93, September.
    5. Denoyel, Victoire & Alfandari, Laurent & Thiele, Aurélie, 2017. "Optimizing healthcare network design under reference pricing and parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 263(3), pages 996-1006.
    6. Erfan Mehmanchi & Andrés Gómez & Oleg A. Prokopyev, 2021. "Solving a class of feature selection problems via fractional 0–1 programming," Annals of Operations Research, Springer, vol. 303(1), pages 265-295, August.
    7. Li, Yifu & Qi, Xiangtong, 2022. "A geometric branch-and-bound algorithm for the service bundle design problem," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1044-1056.
    8. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    9. M. Golbabapour & M. Reza Zahabi, 2024. "Sum rate maximization for mm-wave multi-user hybrid IRS-assisted MIMO systems," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 87(3), pages 593-604, November.
    10. Park, Chong Hyun & Lim, Heejong, 2021. "A parametric approach to integer linear fractional programming: Newton’s and Hybrid-Newton methods for an optimal road maintenance problem," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1030-1039.
    11. Steffen Rebennack & Ashwin Arulselvan & Lily Elefteriadou & Panos M. Pardalos, 2010. "Complexity analysis for maximum flow problems with arc reversals," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 200-216, February.
    12. Yong Xia & Longfei Wang & Xiaohui Wang, 2020. "Globally minimizing the sum of a convex–concave fraction and a convex function based on wave-curve bounds," Journal of Global Optimization, Springer, vol. 77(2), pages 301-318, June.
    13. H. Konno & K. Tsuchiya & R. Yamamoto, 2007. "Minimization of the Ratio of Functions Defined as Sums of the Absolute Values," Journal of Optimization Theory and Applications, Springer, vol. 135(3), pages 399-410, December.
    14. Henk Kiers, 1995. "Maximization of sums of quotients of quadratic forms and some generalizations," Psychometrika, Springer;The Psychometric Society, vol. 60(2), pages 221-245, June.
    15. Zhang, Le & Azadeh, Shadi Sharif & Jiang, Hai, 2025. "Exact and heuristic algorithms for cardinality-constrained assortment optimization problem under the cross-nested logit model," European Journal of Operational Research, Elsevier, vol. 324(1), pages 183-199.
    16. Bart Smeulders & Laurens Cherchye & Bram De Rock & Frits C. R. Spieksma, 2013. "The Money Pump as a Measure of Revealed Preference Violations: A Comment," Journal of Political Economy, University of Chicago Press, vol. 121(6), pages 1248-1258.
    17. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.
    18. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    19. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    20. Smail Addoune & Karima Boufi & Ahmed Roubi, 2018. "Proximal Bundle Algorithms for Nonlinearly Constrained Convex Minimax Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 212-239, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:12:y:2015:i:1:p:197-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.