IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v176y2023i5d10.1007_s10584-023-03508-1.html
   My bibliography  Save this article

Trends in atmospheric ethane

Author

Listed:
  • Federico Maddanu

    (CY Cergy Paris Université)

  • Tommaso Proietti

    (Università di Roma “Tor Vergata”)

Abstract

Understanding the dynamics of the underlying ethane (C2H6) trends has great significance in the context of climate change. The paper focuses on the time series of Fourier Transform Infrared (FTIR) solar spectra ethane column measurements conducted from the ground and recorded at 15 stations in the Northern and Southern Hemispheres. In particular, it deals with assessing time trends in the presence of a strong and persistent annual seasonal component and a very large proportion of missing observations. Our approach proposes a structural model such that seasonality and trend evolve stochastically according to possibly nonstationary long memory models and can be estimated by linear state space methods. The results suggest the existence of a common pattern in the dynamics of ethane trends in both the Northern and Southern Hemispheres. In particular, we found that atmospheric ethane at the Northern Hempisphere stations increased on average by 2.7%yr $$^{-1}$$ - 1 in the period 2009-2015. On the other hand, we estimated an average increase of 1.4%yr $$^{-1}$$ - 1 at the Southern Hempisphere stations.

Suggested Citation

  • Federico Maddanu & Tommaso Proietti, 2023. "Trends in atmospheric ethane," Climatic Change, Springer, vol. 176(5), pages 1-23, May.
  • Handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03508-1
    DOI: 10.1007/s10584-023-03508-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03508-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03508-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
    2. Tommaso Proietti & Eric Hillebrand, 2017. "Seasonal changes in central England temperatures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(3), pages 769-791, June.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    4. H. E. Doran & J. J. Quilkey, 1972. "Harmonic Analysis of Seasonal Data: Some Important Properties," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 54(4_Part_1), pages 646-651.
    5. Isobel J. Simpson & Mads P. Sulbaek Andersen & Simone Meinardi & Lori Bruhwiler & Nicola J. Blake & Detlev Helmig & F. Sherwood Rowland & Donald R. Blake, 2012. "Long-term decline of global atmospheric ethane concentrations and implications for methane," Nature, Nature, vol. 488(7412), pages 490-494, August.
    6. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jared F. Brewer & Dylan B. Millet & Kelley C. Wells & Vivienne H. Payne & Susan Kulawik & Corinne Vigouroux & Karen E. Cady-Pereira & Rick Pernak & Minqiang Zhou, 2024. "Space-based observations of tropospheric ethane map emissions from fossil fuel extraction," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends and cycles in macroeconomic time series," Papers 2005.05266, arXiv.org, revised May 2020.
    2. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Tobias Hartl & Rolf Tschernig & Enzo Weber, 2020. "Fractional trends in unobserved components models," Papers 2005.03988, arXiv.org, revised May 2020.
    4. Caterina Schiavoni & Siem Jan Koopman & Franz Palm & Stephan Smeekes & Jan van den Brakel, 2021. "Time-varying state correlations in state space models and their estimation via indirect inference," Tinbergen Institute Discussion Papers 21-020/III, Tinbergen Institute.
    5. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    6. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    7. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    8. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    9. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    10. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    11. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    12. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    13. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    14. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    15. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    16. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    17. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    18. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    19. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    20. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    21. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    22. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:176:y:2023:i:5:d:10.1007_s10584-023-03508-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.