IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v122y2014i1p341-349.html
   My bibliography  Save this article

The benefits of recent warming for maize production in high latitude China

Author

Listed:
  • Qingfeng Meng
  • Peng Hou
  • David Lobell
  • Hongfei Wang
  • Zhenling Cui
  • Fusuo Zhang
  • Xinping Chen

Abstract

Latitudes above 45°N have been characterized by rates of warming faster than the global average since 1980. However, the effects of this warming on crop production at these latitudes are still unclear. Using 30-years of weather and crop management data in Heilongjiang area of China (43.4° to 53.4°N), combined with the Hybrid-Maize model, we show that that maize yields would have stagnated in most areas and decreased in the southern part of Heilongjiang if varieties were assumed fixed since 1980. However, we show that through farmers’ adaptation, warming has benefitted maize production for much of this region. Specifically, farmers gradually chose longer maturing varieties, resulting in a net 7–17 % yield increase per decade. Meanwhile, farmers also rapidly expanded maize area (from 1.88 million ha in 1980 to 4.01 million ha in 2009) and the northward limit of maize area shifted by more than 290 km from ~50.8°N to ~53.4°N. Overall, benefits from warming represented 35 % of the overall yield gains in the region over this period. The results indicate substantial ongoing adaptations and benefits at north high-latitudes, although they still represent a small fraction of global maize area. The sustainability of crop area expansion in these regions remains unclear and deserves further study. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Qingfeng Meng & Peng Hou & David Lobell & Hongfei Wang & Zhenling Cui & Fusuo Zhang & Xinping Chen, 2014. "The benefits of recent warming for maize production in high latitude China," Climatic Change, Springer, vol. 122(1), pages 341-349, January.
  • Handle: RePEc:spr:climat:v:122:y:2014:i:1:p:341-349
    DOI: 10.1007/s10584-013-1009-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-013-1009-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-013-1009-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhe Ji & Guangsheng Zhou & Lixia Wang & Shudong Wang & Zongshan Li, 2019. "Identifying climate risk causing maize (Zea mays L.) yield fluctuation by time-series data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1213-1222, April.
    2. Wang, Xingya & Tan, Weiming & Zhou, Shunli & Xu, Yang & Cui, Tao & Gao, Hong & Chen, Mingli & Dong, Xuehui & Sun, Hongyong & Yang, Jinzhong & Wu, Yongcheng & Kong, Fanlei & Zhan, Ming & Pan, Jinbao & , 2021. "Converting maize production with low emergy cost and high economic return for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Yuhe Ji & Guangsheng Zhou & Qijin He & Lixia Wang, 2018. "The Effect of Climate Change on Spring Maize ( Zea mays L.) Suitability across China," Sustainability, MDPI, vol. 10(10), pages 1-10, October.
    4. Xi Deng & Yao Huang & Wenjuan Sun & Lingfei Yu & Xunyu Hu & Sheng Wang, 2019. "Different Time Windows Provide Divergent Estimates of Climate Variability and Change Impacts on Maize Yield in Northeast China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    5. Qi Hu & Xueqing Ma & Huayun He & Feifei Pan & Qijin He & Binxiang Huang & Xuebiao Pan, 2019. "Warming and Dimming: Interactive Impacts on Potential Summer Maize Yield in North China Plain," Sustainability, MDPI, vol. 11(9), pages 1-15, May.
    6. Zuliang Zhao & Liu Zhe & Xiaodong Zhang & Xuli Zan & Xiaochuang Yao & Sijia Wang & Sijing Ye & Shaoming Li & Dehai Zhu, 2018. "Spatial Layout of Multi-Environment Test Sites: A Case Study of Maize in Jilin Province," Sustainability, MDPI, vol. 10(5), pages 1-13, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:122:y:2014:i:1:p:341-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.