IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v117y2013i1p119-131.html
   My bibliography  Save this article

Analysing temporal trends in the Indian Summer Monsoon and its variability at a fine spatial resolution

Author

Listed:
  • J. Duncan
  • J. Dash
  • P. Atkinson

Abstract

Temporal trends between 1951 and 2007 in annual Indian Summer Monsoon (ISM) precipitation, frequency of severe drought years and onset date of ISM were analysed on a 0.25° × 0.25° grid cell basis across India using APHRODITE daily gridded precipitation data. Locations which experienced temporal trends of increasing or decreasing inter-annual variation in annual ISM precipitation and onset date of ISM were detected using the non-parametric Mann-Kendall test. A new method of defining local onset of ISM from daily precipitation data was developed to enable countrywide temporal trend analysis of onset date. India was characterised by a heterogeneous spatial distribution in the magnitude of inter-annual variation and location of significant temporal trends in the examined facets of ISM precipitation. A greater extent of the country experienced significant trends (p > 0.05) of increasing inter-annual variation rather than simple increasing or decreasing trends in annual ISM precipitation and onset date of ISM. Field significance tests showed grid cells reporting significant trends were significant (p > 0.05) at the global or field level (except trends of increasing, i.e. later, ISM onset date). This research provides finer spatial detail regarding trends and variation in annual ISM precipitation, severe drought years and onset date of ISM complementing recent studies on trends in extreme precipitation events over India to produce a comprehensive overview of recent behaviour of ISM precipitation. These findings will benefit water managers charged with managing water resources sustainably at a fine spatial scale (the watershed or basin level). Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • J. Duncan & J. Dash & P. Atkinson, 2013. "Analysing temporal trends in the Indian Summer Monsoon and its variability at a fine spatial resolution," Climatic Change, Springer, vol. 117(1), pages 119-131, March.
  • Handle: RePEc:spr:climat:v:117:y:2013:i:1:p:119-131
    DOI: 10.1007/s10584-012-0537-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0537-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0537-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Pai & Latha Sridhar & Pulak Guhathakurta & H. Hatwar, 2011. "District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1797-1813, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guillaume Lacombe & Matthew McCartney, 2014. "Uncovering consistencies in Indian rainfall trends observed over the last half century," Climatic Change, Springer, vol. 123(2), pages 287-299, March.
    2. Moon-Hwan Lee & Deg-Hyo Bae, 2015. "Climate Change Impact Assessment on Green and Blue Water over Asian Monsoon Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2407-2427, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. Chiru Naik & Sagar Rohidas Chavan & P. Sonali, 2023. "Incorporating the climate oscillations in the computation of meteorological drought over India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2617-2646, July.
    2. Jincai Zhao & Qianqian Liu & Heli Lu & Zheng Wang & Ke Zhang & Pan Wang, 2021. "Future droughts in China using the standardized precipitation evapotranspiration index (SPEI) under multi-spatial scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 615-636, October.
    3. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    4. R. Sahoo & Dipanwita Dutta & M. Khanna & N. Kumar & S. Bandyopadhyay, 2015. "Drought assessment in the Dhar and Mewat Districts of India using meteorological, hydrological and remote-sensing derived indices," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 733-751, June.
    5. P. Vijaya Kumar & Mohammed Osman & P. K. Mishra, 2019. "Development and application of a new drought severity index for categorizing drought-prone areas: a case study of undivided Andhra Pradesh state, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 793-812, June.
    6. Srimanta Ghosh & K. Srinivasan, 2016. "Analysis of Spatio-temporal Characteristics and Regional Frequency of Droughts in the Southern Peninsula of India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3879-3898, September.
    7. Bardia Bayat & Mohsen Nasseri & Banafsheh Zahraie, 2015. "Identification of long-term annual pattern of meteorological drought based on spatiotemporal methods: evaluation of different geostatistical approaches," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 515-541, March.
    8. Jie Yang & Yimin Wang & Jianxia Chang & Jun Yao & Qiang Huang, 2016. "Integrated assessment for hydrometeorological drought based on Markov chain model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 1137-1160, November.
    9. Jianping Yang & Chunping Tan & Shijin Wang & Shengxia Wang & Yuan Yang & Hongju Chen, 2015. "Drought Adaptation in the Ningxia Hui Autonomous Region, China: Actions, Planning, Pathways and Barriers," Sustainability, MDPI, vol. 7(11), pages 1-28, November.
    10. Wang Xiao-jun & Zhang Jian-yun & Shamsuddin Shahid & Amgad ElMahdi & He Rui-min & Bao Zhen-xin & Mahtab Ali, 2012. "Water resources management strategy for adaptation to droughts in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(8), pages 923-937, December.
    11. Manish Kumar Goyal & Ashutosh Sharma, 2016. "A fuzzy c-means approach regionalization for analysis of meteorological drought homogeneous regions in western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1831-1847, December.
    12. Pravat Jena & K. S. Kasiviswanathan & Sarita Azad, 2020. "Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2239-2259, December.
    13. Sourabh Shrivastava & Sarat C. Kar & A. K. Sahai & Anu Rani Sharma, 2018. "Identification of Drought Occurrences Using Ensemble Predictions up to 20-Days in Advance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 2113-2130, April.
    14. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:117:y:2013:i:1:p:119-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.