IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v115y2012i3p433-442.html
   My bibliography  Save this article

Use of Representative Climate Futures in impact and adaptation assessment

Author

Listed:
  • Penny Whetton
  • Kevin Hennessy
  • John Clarke
  • Kathleen McInnes
  • David Kent

Abstract

A key challenge for climate projection science is to serve the rapidly growing needs of impact and adaptation assessments (hereafter risk assessments) in an environment where there are substantial differences in the regional projections of climate models, an expanding number of potentially relevant climate model results, and a desire amongst many users to limit the number of future climate scenarios in their assessments. While it may be attractive to select a small number of climate models based on their ability to replicate current climate, there is no robust method for doing this. We outline and illustrate a method that addresses this challenge in a different way. The range of plausible future climates simulated by climate models is classified into a small set of Representative Climate Futures (RCFs) and the relative likelihood of these estimated. For each region, the RCFs are then used as a framework in which to classify more detailed information, such as available climate model and downscaled data sets. Researchers wishing to apply the RCFs in risk assessments can then choose to use a subset of RCFs, such as the “most likely”, “high risk” and “least change” cases for their impact system. Preparation and analysis of future climate data sets can therefore be confined to those models whose simulations best represent the selected RCFs. This significantly reduces the number of models involved, and potentially the effort required to undertake the risk assessment. Consistently applied within a region, RCFs, rather than individual climate models, can become the boundary objects which anchor discussion between the climate science and risk assessment communities, simplifying communication. Since the RCF descriptions need not change as new climate model results emerge, they can also provide a stable framework for assimilating risk assessments undertaken at different times with different sets of climate models. Systematic application of this approach requires various challenges to be addressed, such as robustly classifying future regional climates into a small set and estimating likelihoods. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Penny Whetton & Kevin Hennessy & John Clarke & Kathleen McInnes & David Kent, 2012. "Use of Representative Climate Futures in impact and adaptation assessment," Climatic Change, Springer, vol. 115(3), pages 433-442, December.
  • Handle: RePEc:spr:climat:v:115:y:2012:i:3:p:433-442
    DOI: 10.1007/s10584-012-0471-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-012-0471-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-012-0471-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ian Watterson, 2012. "Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices," Climatic Change, Springer, vol. 111(3), pages 903-922, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ambarish V. Karmalkar & Jeanne M. Thibeault & Alexander M. Bryan & Anji Seth, 2019. "Identifying credible and diverse GCMs for regional climate change studies—case study: Northeastern United States," Climatic Change, Springer, vol. 154(3), pages 367-386, June.
    2. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    3. Nayruti Trivedi & Murali Venkatraman & Clement Chu & Ivan Cole, 2014. "Effect of climate change on corrosion rates of structures in Australia," Climatic Change, Springer, vol. 124(1), pages 133-146, May.
    4. R. Darbyshire & P. Measham & I. Goodwin, 2016. "A crop and cultivar-specific approach to assess future winter chill risk for fruit and nut trees," Climatic Change, Springer, vol. 137(3), pages 541-556, August.
    5. Buckwell, Andrew & Fleming, Christopher & Smart, James & Mackey, Brendan & Ware, Daniel & Hallgren, Willow & Sahin, Oz & Nalau, Johanna, 2018. "Valuing aggregated ecosystem services at a national and regional scale for Vanuatu using a remotely operable, rapid assessment methodology," 2018 Conference (62nd), February 7-9, 2018, Adelaide, Australia 273524, Australian Agricultural and Resource Economics Society.
    6. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    7. Joseph Daron & Ian Macadam & Hideki Kanamaru & Thelma Cinco & Jack Katzfey & Claire Scannell & Richard Jones & Marcelino Villafuerte & Faye Cruz & Gemma Narisma & Rafaela Jane Delfino & Rodel Lasco & , 2018. "Providing future climate projections using multiple models and methods: insights from the Philippines," Climatic Change, Springer, vol. 148(1), pages 187-203, May.
    8. Thomas Mendlik & Andreas Gobiet, 2016. "Selecting climate simulations for impact studies based on multivariate patterns of climate change," Climatic Change, Springer, vol. 135(3), pages 381-393, April.
    9. Lauren Rickards & John Wiseman & Taegen Edwards & Che Biggs, 2014. "The Problem of Fit: Scenario Planning and Climate Change Adaptation in the Public Sector," Environment and Planning C, , vol. 32(4), pages 641-662, August.
    10. Shu Chen & Zhengen Ren & Zhi Tang & Xianrong Zhuo, 2021. "Long-Term Prediction of Weather for Analysis of Residential Building Energy Consumption in Australia," Energies, MDPI, vol. 14(16), pages 1-20, August.
    11. Astrid Kause & Wändi Bruine de Bruin & Fai Fung & Andrea Taylor & Jason Lowe, 2020. "Visualizations of Projected Rainfall Change in the United Kingdom: An Interview Study about User Perceptions," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    12. David J. Lawrence & Amber N. Runyon & John E. Gross & Gregor W. Schuurman & Brian W. Miller, 2021. "Divergent, plausible, and relevant climate futures for near- and long-term resource planning," Climatic Change, Springer, vol. 167(3), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meyer, Rachelle S. & Cullen, Brendan R. & Whetton, Penny H. & Robertson, Fiona A. & Eckard, Richard J., 2018. "Potential impacts of climate change on soil organic carbon and productivity in pastures of south eastern Australia," Agricultural Systems, Elsevier, vol. 167(C), pages 34-46.
    2. Allyson Williams & Neil White & Shahbaz Mushtaq & Geoff Cockfield & Brendan Power & Louis Kouadio, 2015. "Quantifying the response of cotton production in eastern Australia to climate change," Climatic Change, Springer, vol. 129(1), pages 183-196, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:115:y:2012:i:3:p:433-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.