IDEAS home Printed from https://ideas.repec.org/a/spr/cejnor/v33y2025i3d10.1007_s10100-025-00982-z.html
   My bibliography  Save this article

Modeling dynamics of opinion formation in small groups: a framework capturing individual opinion adjustments

Author

Listed:
  • Jaroslav Horáček

    (Charles University
    Prague University of Economics and Business)

Abstract

The manuscript extends previous research on experimentally supported agent-based models of opinion formation in groups. This study introduces the Opinion Shift Map, a novel tool for visualizing and quantifying individual responses to an advisor’s opinion based on the differences in both opinion and confidence. The goal is to integrate this tool into an agent-based model to better understand opinion dynamics in small groups. Through computer simulations, the influence of initial opinion and confidence distributions on opinion evolution is examined. Additionally, conditions under which a minority can persuade the majority, the role of confidence shifts, the impact of opinion update rates, and the influence of perceived distances between opinions and confidences are investigated. The findings highlight key factors shaping group consensus and offer insights into real-world opinion dynamics. Finally, the study evaluates the model’s strengths and limitations and suggests directions for future research.

Suggested Citation

  • Jaroslav Horáček, 2025. "Modeling dynamics of opinion formation in small groups: a framework capturing individual opinion adjustments," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 33(3), pages 729-756, September.
  • Handle: RePEc:spr:cejnor:v:33:y:2025:i:3:d:10.1007_s10100-025-00982-z
    DOI: 10.1007/s10100-025-00982-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10100-025-00982-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10100-025-00982-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Károly Takács & Andreas Flache & Michael Mäs, 2016. "Discrepancy and Disliking Do Not Induce Negative Opinion Shifts," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-21, June.
    2. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    3. Galesic, Mirta & Stein, D.L., 2019. "Statistical physics models of belief dynamics: Theory and empirical tests," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 275-294.
    4. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    5. Pawel Sobkowicz, 2009. "Modelling Opinion Formation with Physics Tools: Call for Closer Link with Reality," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(1), pages 1-11.
    6. Dino Carpentras & Paul J. Maher & Caoimhe O'Reilly & Michael Quayle, 2022. "Deriving an Opinion Dynamics Model from Experimental Data," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 25(4), pages 1-4.
    7. David Scott Hunter & Tauhid Zaman, 2022. "Optimizing Opinions with Stubborn Agents," Operations Research, INFORMS, vol. 70(4), pages 2119-2137, July.
    8. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    9. Andreas Flache & Michael Mäs & Thomas Feliciani & Edmund Chattoe-Brown & Guillaume Deffuant & Sylvie Huet & Jan Lorenz, 2017. "Models of Social Influence: Towards the Next Frontiers," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(4), pages 1-2.
    10. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    11. repec:plo:pone00:0078433 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Kozitsin, Ivan V., 2024. "Optimal control in opinion dynamics models: diversity of influence mechanisms and complex influence hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    3. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    4. Francisco J. León-Medina & Jordi Tena-Sánchez & Francisco J. Miguel, 2020. "Fakers becoming believers: how opinion dynamics are shaped by preference falsification, impression management and coherence heuristics," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 385-412, April.
    5. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    6. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    7. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    8. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    9. Andreas Flache, 2018. "About Renegades And Outgroup Haters: Modeling The Link Between Social Influence And Intergroup Attitudes," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-32, September.
    10. Dong Jiang & Qionglin Dai & Haihong Li & Junzhong Yang, 2024. "Opinion dynamics based on social learning theory," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(12), pages 1-9, December.
    11. Carlos Andrés Devia & Giulia Giordano, 2024. "Graphical analysis of agent-based opinion formation models," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-27, May.
    12. repec:plo:pone00:0078433 is not listed on IDEAS
    13. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Wen, Tao & Zheng, Rui & Wu, Ting & Liu, Zeyi & Zhou, Mi & Syed, Tahir Abbas & Ghataoura, Darminder & Chen, Yu-wang, 2025. "Formulating opinion dynamics from belief formation, diffusion and updating in social network group decision-making: Towards developing a holistic framework," European Journal of Operational Research, Elsevier, vol. 325(3), pages 381-399.
    15. Pedraza, Lucía & Pinasco, Juan Pablo & Semeshenko, Viktoriya & Balenzuela, Pablo, 2023. "Mesoscopic analytical approach in a three state opinion model with continuous internal variable," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Shang, Lihui & Zhao, Mingming & Ai, Jun & Su, Zhan, 2021. "Opinion evolution in the Sznajd model on interdependent chains," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    17. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    18. Denis Tverskoi & Andrea Guido & Giulia Andrighetto & Angel Sánchez & Sergey Gavrilets, 2023. "Disentangling material, social, and cognitive determinants of human behavior and beliefs," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    19. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    20. Guillaume Deffuant & Ilaria Bertazzi & Sylvie Huet, 2018. "The Dark Side Of Gossips: Hints From A Simple Opinion Dynamics Model," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-20, September.
    21. Schweitzer, Frank, 2021. "Social percolation revisited: From 2d lattices to adaptive networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:cejnor:v:33:y:2025:i:3:d:10.1007_s10100-025-00982-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.