IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i4d10.1007_s40745-020-00299-5.html
   My bibliography  Save this article

Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations

Author

Listed:
  • Hassan M. Okasha

    (King AbdulAziz University
    Al-Azhar University)

  • Abdulkareem M. Basheer

    (Damietta University
    Al-Bayda University)

  • A. H. El-Baz

    (Damietta University)

Abstract

The inverse Weibull distribution is successfully applied in many different disciplines e.g., reliability engineering, bioengineering and modeling of survival data. There are lots of statistical and computer science techniques e.g., particle swarm optimization, employed to estimate the parameters of this distribution and its generalization. The suitable methods for estimating the parameters of Marshall–Olkin extended inverse Weibull distribution are specified in this paper. So, the performance of different estimation methods called maximum likelihood, Percentiles, Least squares, Weighted least squares, Cramér–van Mises and Anderson–Darling methods, is compared in terms of the bias and mean squared error through extensive numerical simulations. Also, empirical illustration on real life dataset supported the obtained conclusion.

Suggested Citation

  • Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:4:d:10.1007_s40745-020-00299-5
    DOI: 10.1007/s40745-020-00299-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-020-00299-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-020-00299-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    2. Md. Mahabubur Rahman & Bander Al-Zahrani & Muhammad Qaiser Shahbaz, 2019. "Cubic Transmuted Weibull Distribution: Properties and Applications," Annals of Data Science, Springer, vol. 6(1), pages 83-102, March.
    3. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    4. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    5. Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
    6. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu Ismail Ishaq & Alfred Adewole Abiodun, 2020. "The Maxwell–Weibull Distribution in Modeling Lifetime Datasets," Annals of Data Science, Springer, vol. 7(4), pages 639-662, December.
    2. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    3. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    4. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    5. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    6. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    7. Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Mukhtar M. Salah & M. El-Morshedy & M. S. Eliwa & Haitham M. Yousof, 2020. "Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing," Mathematics, MDPI, vol. 8(11), pages 1-29, November.
    9. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    10. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    11. Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
    12. Joarder, Avijit & Krishna, Hare & Kundu, Debasis, 2011. "Inferences on Weibull parameters with conventional type-I censoring," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 1-11, January.
    13. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    14. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    15. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    16. Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
    17. Acitas, Sukru & Aladag, Cagdas Hakan & Senoglu, Birdal, 2019. "A new approach for estimating the parameters of Weibull distribution via particle swarm optimization: An application to the strengths of glass fibre data," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 116-127.
    18. Ahtasham Gul & Muhammad Mohsin & Muhammad Adil & Mansoor Ali, 2021. "A modified truncated distribution for modeling the heavy tail, engineering and environmental sciences data," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-24, April.
    19. Abdulrahman Abouammoh & Mohamed Kayid, 2020. "A New Family of Extended Lindley Models: Properties, Estimation and Applications," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    20. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:4:d:10.1007_s40745-020-00299-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.