IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v350y2025i3d10.1007_s10479-025-06663-z.html
   My bibliography  Save this article

On random weighted coherent systems based on a new structure-based performance measure

Author

Listed:
  • Tanmay Sahoo

    (Indian Institute of Technology Jodhpur)

  • Nil Kamal Hazra

    (Indian Institute of Technology Jodhpur)

  • Narayanaswamy Balakrishnan

    (McMaster University)

Abstract

The performance level of a random weighted r-out-of-n system is measured by its total capacity. However, this measure is not meaningful for an arbitrary coherent structure as it does not involve the structure of the system. To overcome this drawback, we introduce here a new notion of performance measure (namely, the structural capacity) and then define three different notions of random weighted coherent systems, namely, Type-I, Type-II and Type-III systems. We then derive explicit formulas for computing the reliabilities of these systems. We further give a signature-based reliability representation for these systems. Further, we derive the Birnbaum marginal and joint reliability importance measures for the components of these systems and subsequently provide an algorithm for computing the same. Then, we study several ordering results based on these importance measures. For the Type-III random weighted coherent system, we introduce a new structure-based weighted importance measure and provide an algorithm for its evaluation. The developed results are illustrated through several numerical examples. Finally, we carry out the reliability estimation for a random weighted coherent system using two different simulated data sets.

Suggested Citation

  • Tanmay Sahoo & Nil Kamal Hazra & Narayanaswamy Balakrishnan, 2025. "On random weighted coherent systems based on a new structure-based performance measure," Annals of Operations Research, Springer, vol. 350(3), pages 1169-1206, July.
  • Handle: RePEc:spr:annopr:v:350:y:2025:i:3:d:10.1007_s10479-025-06663-z
    DOI: 10.1007/s10479-025-06663-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-025-06663-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-025-06663-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yan-Feng Li & Hong-Zhong Huang & Jinhua Mi & Weiwen Peng & Xiaomeng Han, 2022. "Reliability analysis of multi-state systems with common cause failures based on Bayesian network and fuzzy probability," Annals of Operations Research, Springer, vol. 311(1), pages 195-209, April.
    2. Philip J. Boland & Frank Proschan & Y. L. Tong, 1989. "Optimal arrangement of components via pairwise rearrangements," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(6), pages 807-815, December.
    3. Serkan Eryilmaz, 2014. "A new look at dynamic behavior of binary coherent system from a state-level perspective," Annals of Operations Research, Springer, vol. 212(1), pages 115-125, January.
    4. Marichal, Jean-Luc & Mathonet, Pierre & Navarro, Jorge & Paroissin, Christian, 2017. "Joint signature of two or more systems with applications to multistate systems made up of two-state components," European Journal of Operational Research, Elsevier, vol. 263(2), pages 559-570.
    5. Eryilmaz, Serkan, 2015. "Capacity loss and residual capacity in weighted k-out-of-n:G systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 140-144.
    6. Francisco J. Samaniego, 2007. "System Signatures and their Applications in Engineering Reliability," International Series in Operations Research and Management Science, Springer, number 978-0-387-71797-5, March.
    7. Zhang, Yiying, 2018. "Optimal allocation of active redundancies in weighted k-out-of-n systems," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 110-117.
    8. Ding Zhang & Yi Luo & Qiang Liu, 2024. "Reliability evaluation of production systems with finite buffers subject to time-dependent and operation-dependent failures," Annals of Operations Research, Springer, vol. 340(1), pages 671-691, September.
    9. Yiying Zhang & Weiyong Ding & Peng Zhao, 2018. "On total capacity of k‐out‐of‐n systems with random weights," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(4), pages 347-359, June.
    10. Jiandong Zhang & Yiying Zhang, 2023. "Stochastic comparisons of relevation allocation policies in coherent systems," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 865-907, September.
    11. Samaniego, Francisco J. & Shaked, Moshe, 2008. "Systems with weighted components," Statistics & Probability Letters, Elsevier, vol. 78(6), pages 815-823, April.
    12. Jorge Navarro & Francisco J. Samaniego & N. Balakrishnan & Debasis Bhattacharya, 2008. "On the application and extension of system signatures in engineering reliability," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(4), pages 313-327, June.
    13. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goroncy, Agnieszka & Jasiński, Krzysztof & Korejwo, Faustyna & Rudzate, Marta, 2025. "Lost capacity of the weighted k-out-of-n system with discrete component lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 259(C).
    2. Eryilmaz, Serkan & Ucum, Kaan Ayberk, 2021. "The lost capacity by the weighted k-out-of-n system upon system failure," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Zhang, Yiying, 2021. "Reliability Analysis of Randomly Weighted k-out-of-n Systems with Heterogeneous Components," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Jia, Xujie & Shen, Jingyuan & Xu, Fanqi & Ma, Ruihong & Song, Xueying, 2019. "Modular decomposition signature for systems with sequential failure effect," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 435-444.
    5. Zhu, Xiaojun & Balakrishnan, N., 2023. "Non-parametric inference based on reliability life-test of non-identical coherent systems with application to warranty time," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Yi, He & Cui, Lirong & Balakrishnan, Narayanaswamy, 2021. "Computation of survival signatures for multi-state consecutive-k systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. He Yi & Narayanaswamy Balakrishnan & Xiang Li, 2023. "Multi-State Joint Survival Signature for Multi-State Systems with Shared Multi-State Components," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-18, March.
    8. Somayeh Ashrafi & Majid Asadi & Jorge Navarro, 2022. "Joint Reliability Function of Coherent Systems with Shared Heterogeneous Components," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1485-1502, September.
    9. Tavangar, Mahdi & Hashemi, Marzieh, 2022. "Reliability and maintenance analysis of coherent systems subject to aging and environmental shocks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    10. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    11. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    12. Frank P. A. Coolen & Tahani Coolen-Maturi & Ali M. Y. Mahnashi, 2024. "Nonparametric Predictive Inference for Discrete Lifetime Data," Mathematics, MDPI, vol. 12(22), pages 1-14, November.
    13. M. Salehi & Z. Shishebor & M. Asadi, 2019. "On the reliability modeling of weighted k-out-of-n systems with randomly chosen components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(5), pages 589-605, July.
    14. Qi, Faqun & Yang, Huaqing & Wei, Lai & Shu, Xinting, 2024. "Preventive maintenance policy optimization for a weighted k-out-of-n: G system using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    15. Serkan Eryilmaz & Ali Riza Bozbulut, 2019. "Reliability analysis of weighted- k -out-of- n system consisting of three-state components," Journal of Risk and Reliability, , vol. 233(6), pages 972-977, December.
    16. Ioannis S. Triantafyllou, 2022. "Signature-Based Analysis of the Weighted- r -within-Consecutive- k -out-of- n : F Systems," Mathematics, MDPI, vol. 10(15), pages 1-13, July.
    17. Eryilmaz, Serkan, 2018. "Reliability analysis of multi-state system with three-state components and its application to wind energy," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 58-63.
    18. Yi, He & Balakrishnan, Narayanaswamy & Li, Xiang, 2024. "Joint signatures of two or more semi-coherent systems with shared components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    19. Akshay Kumar & Subhi Tyagi & Mangey Ram, 0. "Signature of bridge structure using universal generating function," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-5.
    20. Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:350:y:2025:i:3:d:10.1007_s10479-025-06663-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.