Compactness score: a fast filter method for unsupervised feature selection
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-023-05271-z
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Hoai An Le Thi & Manh Cuong Nguyen, 2017. "DCA based algorithms for feature selection in multi-class support vector machine," Annals of Operations Research, Springer, vol. 249(1), pages 273-300, February.
- Cathy Maugis & Gilles Celeux & Marie-Laure Martin-Magniette, 2009. "Variable Selection for Clustering with Gaussian Mixture Models," Biometrics, The International Biometric Society, vol. 65(3), pages 701-709, September.
- Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
- Onur Şeref & Ya-Ju Fan & Elan Borenstein & Wanpracha A. Chaovalitwongse, 2018. "Information-theoretic feature selection with discrete $$k$$ k -median clustering," Annals of Operations Research, Springer, vol. 263(1), pages 93-118, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
- Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
- Scindhiya Laxmi & S. K. Gupta & Sumit Kumar, 2024. "Intuitionistic fuzzy least square twin support vector machines for pattern classification," Annals of Operations Research, Springer, vol. 339(3), pages 1329-1378, August.
- Fulvia Pennoni & Francesco Bartolucci & Silvia Pandolfi, 2024.
"Erratum to: Variable Selection for Hidden Markov Models with Continuous Variables and Missing Data,"
Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 590-590, November.
- Fulvia Pennoni & Francesco Bartolucci & Silvia Pandolfi, 2024. "Variable Selection for Hidden Markov Models with Continuous Variables and Missing Data," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 568-589, November.
- Fabio Centofanti & Antonio Lepore & Biagio Palumbo, 2024. "Sparse and smooth functional data clustering," Statistical Papers, Springer, vol. 65(2), pages 795-825, April.
- Alaleh Razmjoo & Petros Xanthopoulos & Qipeng Phil Zheng, 2019. "Feature importance ranking for classification in mixed online environments," Annals of Operations Research, Springer, vol. 276(1), pages 315-330, May.
- Faizal Hafiz & Jan Broekaert & Davide Torre & Akshya Swain, 2024. "A multi-criteria approach to evolve sparse neural architectures for stock market forecasting," Annals of Operations Research, Springer, vol. 336(1), pages 1219-1263, May.
- Paul McLaughlin & Brian C. Franczak & Adam B. Kashlak, 2024. "Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures," Journal of Classification, Springer;The Classification Society, vol. 41(1), pages 65-93, March.
- Kazim Topuz & Behrooz Davazdahemami & Dursun Delen, 2024. "A Bayesian belief network-based analytics methodology for early-stage risk detection of novel diseases," Annals of Operations Research, Springer, vol. 341(1), pages 673-697, October.
- Floriello, Davide & Vitelli, Valeria, 2017. "Sparse clustering of functional data," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 1-18.
- Anzanello, Michel J. & Fogliatto, Flavio S., 2011. "Selecting the best clustering variables for grouping mass-customized products involving workers' learning," International Journal of Production Economics, Elsevier, vol. 130(2), pages 268-276, April.
- Hoai An Le Thi & Tao Pham Dinh, 2024. "Open issues and recent advances in DC programming and DCA," Journal of Global Optimization, Springer, vol. 88(3), pages 533-590, March.
- Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
- Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
- F. Benedetto & L. Mastroeni & P. Vellucci, 2021. "Modeling the flow of information between financial time-series by an entropy-based approach," Annals of Operations Research, Springer, vol. 299(1), pages 1235-1252, April.
- Hivert, Benjamin & Agniel, Denis & Thiébaut, Rodolphe & Hejblum, Boris P., 2024. "Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
- Laura C. Dawkins & Daniel B. Williamson & Stewart W. Barr & Sally R. Lampkin, 2020. "‘What drives commuter behaviour?': a Bayesian clustering approach for understanding opposing behaviours in social surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 251-280, January.
- Roberto Rocci & Maurizio Vichi & Monia Ranalli, 2025. "Mixture models for simultaneous classification and reduction of three-way data," Computational Statistics, Springer, vol. 40(1), pages 469-507, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:348:y:2025:i:1:d:10.1007_s10479-023-05271-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/spr/annopr/v348y2025i1d10.1007_s10479-023-05271-z.html