IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i1d10.1007_s10479-020-03566-z.html
   My bibliography  Save this article

Periodic replacement policies with shortage and excess costs

Author

Listed:
  • Xufeng Zhao

    (Nanjing University of Aeronautics and Astronautics)

  • Mingchih Chen

    (Fu Jen Catholic University)

  • Toshio Nakagawa

    (Aichi Institute of Technology)

Abstract

It has been proposed that if replacement time is planned too early prior to failure, a waste of operation cost, i.e., excess costs, would incur because the system might run for an additional period of time to complete critical operations, and if replacement time is too late after failure, a great failure cost, i.e., shortage cost, is incurred due to the delay in time of the carelessly scheduled replacement. In order to make the preventive replacement policies perform in a more general way, the above two variable types of costs are taken into considerations for periodic replacement policies in this paper. We firstly take up a standard model in which the unit is replaced preventively at periodic times. Secondly, the modeling approaches of whichever occurs first and last are applied into periodic and random models, and replacement first and last policies are discussed to find optimum periodic replacement times for a random working time. Furthermore, optimum working numbers are obtained for the extended models. We give analytical discussions of the above replacement policies, and finally, numerical examples are illustrated.

Suggested Citation

  • Xufeng Zhao & Mingchih Chen & Toshio Nakagawa, 2022. "Periodic replacement policies with shortage and excess costs," Annals of Operations Research, Springer, vol. 311(1), pages 469-487, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-020-03566-z
    DOI: 10.1007/s10479-020-03566-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03566-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03566-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2014. "Random Maintenance Policies," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-6575-0, September.
    2. Dae‐Kyung Kim & Jae‐Hak Lim & Dong Ho Park, 2015. "Optimal maintenance level for second‐hand product with periodic inspection schedule," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(3), pages 349-359, May.
    3. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    4. Chin-Chih Chang & Yen-Luan Chen, 2019. "Optimization of continuous and discrete scheduled times for a cumulative damage system with age-dependent maintenance," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(17), pages 4261-4277, September.
    5. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    6. Xufeng Zhao & Toshio Nakagawa, 2018. "Advanced Maintenance Policies for Shock and Damage Models," Springer Series in Reliability Engineering, Springer, number 978-3-319-70456-2, September.
    7. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    8. Yen-Luan Chen, 2019. "Optimal scheduling replacement policies for a system with multiple random works," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(3), pages 676-688, February.
    9. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    10. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    11. Joachim Arts & Rob Basten, 2018. "Design of multi-component periodic maintenance programs with single-component models," IISE Transactions, Taylor & Francis Journals, vol. 50(7), pages 606-615, July.
    12. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    13. Toshio Nakagawa, 2008. "Advanced Reliability Models and Maintenance Policies," Springer Series in Reliability Engineering, Springer, number 978-1-84800-294-4, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    2. Xufeng Zhao & Satoshi Mizutani & Mingchih Chen & Toshio Nakagawa, 2022. "Preventive replacement policies for parallel systems with deviation costs between replacement and failure," Annals of Operations Research, Springer, vol. 312(1), pages 533-551, May.
    3. Mizutani, Satoshi & Zhao, Xufeng & Nakagawa, Toshio, 2021. "Age and periodic replacement policies with two failure modes in general replacement models," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Zhang, Qin & Fang, Zhigeng & Cai, Jiajia, 2021. "Preventive replacement policies with multiple missions and maintenance triggering approaches," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Zhang, Qin & Fang, Zhigeng & Cai, Jiajia, 2021. "Extended block replacement policies with mission durations and maintenance triggering approaches," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    8. Yongjun Du & Lijun Shang & Qingan Qiu & Li Yang, 2022. "Optimum Post-Warranty Maintenance Policies for Products with Random Working Cycles," Mathematics, MDPI, vol. 10(10), pages 1-16, May.
    9. Wu, Jing & Qian, Cunhua & Dohi, Tadashi, 2024. "Optimal opportunity-based age replacement policies in discrete time," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    11. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    12. Sheu, Shey-Huei & Liu, Tzu-Hsin & Sheu, Wei-Teng & Zhang, Zhe-George & Ke, Jau-Chuan, 2021. "Optimal replacement policy with replacement last under cumulative damage models," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    13. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    14. Lijun Shang & Xiguang Yu & Liying Wang & Yongjun Du, 2022. "Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    15. Lijun Shang & Xiguang Yu & Yongjun Du & Anquan Zou & Qingan Qiu, 2022. "An Optimal Random Hybrid Maintenance Policy of Systems under a Warranty with Rebate and Charge," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
    16. Lijun Shang & Yongjun Du & Cang Wu & Chengye Ma, 2022. "A Bivariate Optimal Random Replacement Model for the Warranted Product with Job Cycles," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    17. Junyuan Wang & Jimin Ye & Qianru Ma & Pengfei Xie, 2022. "An extended geometric process repairable model with its repairman having vacation," Annals of Operations Research, Springer, vol. 311(1), pages 401-415, April.
    18. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    19. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    20. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-020-03566-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.