IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v291y2020i1d10.1007_s10479-019-03205-2.html
   My bibliography  Save this article

Multi-objective vehicle routing and loading with time window constraints: a real-life application

Author

Listed:
  • Xiang Song

    (University of Portsmouth)

  • Dylan Jones

    (University of Portsmouth)

  • Nasrin Asgari

    (University of Roehampton)

  • Tim Pigden

    (Optrak Distribution Software Limited)

Abstract

Motivated by a real-life application, this research considers the multi-objective vehicle routing and loading problem with time window constraints which is a variant of the Capacitated Vehicle Routing Problem with Time Windows with one/two-dimensional loading constraints. The problem consists of routing a number of vehicles to serve a set of customers and determining the best way of loading the goods ordered by the customers onto the vehicles used for transportation. The three objectives pertaining to minimisation of total travel distance, number of routes to use and total number of mixed orders in the same pallet are, more often than not, conflicting. To achieve a solution with no preferential information known in advance from the decision maker, the problem is formulated as a Mixed Integer Linear Programming (MILP) model with one objective—minimising the total cost, where the three original objectives are incorporated as parts of the total cost function. A Generalised Variable Neighbourhood Search (GVNS) algorithm is designed as the search engine to relieve the computational burden inherent to the application of the MILP model. To evaluate the effectiveness of the GVNS algorithm, a real instance case study is generated and solved by both the GVNS algorithm and the software provided by our industrial partner. The results show that the suggested approach provides solutions with better overall values than those found by the software provided by our industrial partner.

Suggested Citation

  • Xiang Song & Dylan Jones & Nasrin Asgari & Tim Pigden, 2020. "Multi-objective vehicle routing and loading with time window constraints: a real-life application," Annals of Operations Research, Springer, vol. 291(1), pages 799-825, August.
  • Handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-019-03205-2
    DOI: 10.1007/s10479-019-03205-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03205-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03205-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuellerer, Guenther & Doerner, Karl F. & Hartl, Richard F. & Iori, Manuel, 2010. "Metaheuristics for vehicle routing problems with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 201(3), pages 751-759, March.
    2. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    3. Michel Gendreau & Manuel Iori & Gilbert Laporte & Silvano Martello, 2006. "A Tabu Search Algorithm for a Routing and Container Loading Problem," Transportation Science, INFORMS, vol. 40(3), pages 342-350, August.
    4. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    5. Abraham Duarte & Juan Pantrigo & Eduardo Pardo & Nenad Mladenovic, 2015. "Multi-objective variable neighborhood search: an application to combinatorial optimization problems," Journal of Global Optimization, Springer, vol. 63(3), pages 515-536, November.
    6. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.
    7. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    8. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    9. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2016. "The Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries and Two-Dimensional Loading Constraints," European Journal of Operational Research, Elsevier, vol. 251(2), pages 369-386.
    10. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    11. Dirk Männel & Andreas Bortfeldt, 2015. "A Hybrid Algorithm for the Vehicle Routing Problem with Pickup and Delivery and 3D Loading Constraints," FEMM Working Papers 150015, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Manuel Iori & Juan-José Salazar-González & Daniele Vigo, 2007. "An Exact Approach for the Vehicle Routing Problem with Two-Dimensional Loading Constraints," Transportation Science, INFORMS, vol. 41(2), pages 253-264, May.
    13. Bortfeldt, Andreas & Hahn, Thomas & Männel, Dirk & Mönch, Lars, 2015. "Hybrid algorithms for the vehicle routing problem with clustered backhauls and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 243(1), pages 82-96.
    14. Billy E. Gillett & Leland R. Miller, 1974. "A Heuristic Algorithm for the Vehicle-Dispatch Problem," Operations Research, INFORMS, vol. 22(2), pages 340-349, April.
    15. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    16. Selma Khebbache-Hadji & Christian Prins & Alice Yalaoui & Mohamed Reghioui, 2013. "Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 307-336, March.
    17. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Christos T., 2009. "A Guided Tabu Search for the Vehicle Routing Problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 195(3), pages 729-743, June.
    18. Manuel Iori & Silvano Martello, 2010. "Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 4-27, July.
    19. Wei, Lijun & Zhang, Zhenzhen & Zhang, Defu & Leung, Stephen C.H., 2018. "A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 265(3), pages 843-859.
    20. Leung, Stephen C.H. & Zhang, Zhenzhen & Zhang, Defu & Hua, Xian & Lim, Ming K., 2013. "A meta-heuristic algorithm for heterogeneous fleet vehicle routing problems with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 225(2), pages 199-210.
    21. Reil, Sebastian & Bortfeldt, Andreas & Mönch, Lars, 2018. "Heuristics for vehicle routing problems with backhauls, time windows, and 3D loading constraints," European Journal of Operational Research, Elsevier, vol. 266(3), pages 877-894.
    22. Manuel Iori & Silvano Martello, 2010. "Rejoinder on: Routing problems with loading constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 41-42, July.
    23. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    24. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    25. Mahdi Alinaghian & Komail Zamanlou & Mohammad S. Sabbagh, 2017. "A bi-objective mathematical model for two-dimensional loading time-dependent vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1422-1441, November.
    26. Roberto Baldacci & Paolo Toth & Daniele Vigo, 2010. "Exact algorithms for routing problems under vehicle capacity constraints," Annals of Operations Research, Springer, vol. 175(1), pages 213-245, March.
    27. Wei, Lijun & Zhang, Zhenzhen & Zhang, Defu & Lim, Andrew, 2015. "A variable neighborhood search for the capacitated vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 243(3), pages 798-814.
    28. Emmanouil E. Zachariadis & Christos D. Tarantilis & Chris T. Kiranoudis, 2012. "The Pallet-Packing Vehicle Routing Problem," Transportation Science, INFORMS, vol. 46(3), pages 341-358, August.
    29. F. Errico & G. Desaulniers & M. Gendreau & W. Rei & L.-M. Rousseau, 2018. "The vehicle routing problem with hard time windows and stochastic service times," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 223-251, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Subrat Sarangi & Sudipta Sarangi & Nasim S. Sabounchi, 2023. "How managerial perspectives affect the optimal fleet size and mix model: a multi-objective approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(1), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    2. Männel, Dirk & Bortfeldt, Andreas, 2016. "A hybrid algorithm for the vehicle routing problem with pickup and delivery and three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 254(3), pages 840-858.
    3. Wei, Lijun & Zhang, Zhenzhen & Zhang, Defu & Leung, Stephen C.H., 2018. "A simulated annealing algorithm for the capacitated vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 265(3), pages 843-859.
    4. Cherkesly, Marilène & Gschwind, Timo, 2022. "The pickup and delivery problem with time windows, multiple stacks, and handling operations," European Journal of Operational Research, Elsevier, vol. 301(2), pages 647-666.
    5. Zhang, Xiangyi & Chen, Lu & Gendreau, Michel & Langevin, André, 2022. "A branch-and-cut algorithm for the vehicle routing problem with two-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 302(1), pages 259-269.
    6. Zhang, Zhenzhen & Wei, Lijun & Lim, Andrew, 2015. "An evolutionary local search for the capacitated vehicle routing problem minimizing fuel consumption under three-dimensional loading constraints," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 20-35.
    7. Alonso, M.T. & Martinez-Sykora, A. & Alvarez-Valdes, R. & Parreño, F., 2022. "The pallet-loading vehicle routing problem with stability constraints," European Journal of Operational Research, Elsevier, vol. 302(3), pages 860-873.
    8. Bortfeldt, Andreas & Yi, Junmin, 2020. "The Split Delivery Vehicle Routing Problem with three-dimensional loading constraints," European Journal of Operational Research, Elsevier, vol. 282(2), pages 545-558.
    9. Henriette Koch & Maximilian Schlögell & Andreas Bortfeldt, 2020. "A hybrid algorithm for the vehicle routing problem with three-dimensional loading constraints and mixed backhauls," Journal of Scheduling, Springer, vol. 23(1), pages 71-93, February.
    10. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    11. Rajaei, Maryam & Moslehi, Ghasem & Reisi-Nafchi, Mohammad, 2022. "The split heterogeneous vehicle routing problem with three-dimensional loading constraints on a large scale," European Journal of Operational Research, Elsevier, vol. 299(2), pages 706-721.
    12. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    13. Mahdi Alinaghian & Komail Zamanlou & Mohammad S. Sabbagh, 2017. "A bi-objective mathematical model for two-dimensional loading time-dependent vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1422-1441, November.
    14. Bonet Filella, Guillem & Trivella, Alessio & Corman, Francesco, 2023. "Modeling soft unloading constraints in the multi-drop container loading problem," European Journal of Operational Research, Elsevier, vol. 308(1), pages 336-352.
    15. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2017. "A hybrid solution approach for the 3L-VRP with simultaneous delivery and pickups," FEMM Working Papers 170005, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    16. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2020. "The Vehicle Routing Problem with Stochastic Two-Dimensional Items," Transportation Science, INFORMS, vol. 54(2), pages 453-469, March.
    17. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2013. "Designing vehicle routes for a mix of different request types, under time windows and loading constraints," European Journal of Operational Research, Elsevier, vol. 229(2), pages 303-317.
    18. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2016. "The Vehicle Routing Problem with Simultaneous Pick-ups and Deliveries and Two-Dimensional Loading Constraints," European Journal of Operational Research, Elsevier, vol. 251(2), pages 369-386.
    19. Ana Moura & Telmo Pinto & Cláudio Alves & José Valério de Carvalho, 2023. "A Matheuristic Approach to the Integration of Three-Dimensional Bin Packing Problem and Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    20. Henriette Koch & Andreas Bortfeldt & Gerhard Wäscher, 2018. "A hybrid algorithm for the vehicle routing problem with backhauls, time windows and three-dimensional loading constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 1029-1075, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:291:y:2020:i:1:d:10.1007_s10479-019-03205-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.