IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v289y2020i2d10.1007_s10479-020-03563-2.html
   My bibliography  Save this article

Robust Nash equilibria in vector-valued games with uncertainty

Author

Listed:
  • Giovanni P. Crespi

    (Universitá degli Studi dell’Insubria)

  • Daishi Kuroiwa

    (Shimane University)

  • Matteo Rocca

    (Universitá degli Studi dell’Insubria)

Abstract

We study a vector-valued game with uncertainty in the pay-off functions. We reduce the notion of Nash equilibrium to a robust set optimization problem and we define accordingly the notions of robust Nash equilibria and weak robust Nash equilibria. Existence results for the latter are proved and a comparison between the former and the analogous notion in Yu and Liu (J Optim Theory Appl 159:272–280, 2013) is shown with an example. The proposed definition of weak robust Nash equilibrium is weaker than that already introduced in Yu and Liu (2013). On the contrary, the robust Nash equilibrium we introduce is not comparable with the notion of robust equilibrium in Yu and Liu (2013), that is defined componentwise. Nevertheless, by means of an example, we show that our notion has some advantages, avoiding some pitfalls that occurs with the other.

Suggested Citation

  • Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2020. "Robust Nash equilibria in vector-valued games with uncertainty," Annals of Operations Research, Springer, vol. 289(2), pages 185-193, June.
  • Handle: RePEc:spr:annopr:v:289:y:2020:i:2:d:10.1007_s10479-020-03563-2
    DOI: 10.1007/s10479-020-03563-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03563-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03563-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Levaggi, Laura & Pusillo, Lucia, 2017. "Classes of multiojectives games possessing Pareto equilibria," Operations Research Perspectives, Elsevier, vol. 4(C), pages 142-148.
    2. Giovanni Paolo Crespi & Davide Radi & Matteo Rocca, 2017. "Robust games: theory and application to a Cournot duopoly model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 177-198, November.
    3. Xie Ding, 2012. "Equilibrium existence theorems for multi-leader-follower generalized multiobjective games in FC-spaces," Journal of Global Optimization, Springer, vol. 53(3), pages 381-390, July.
    4. Lucia Pusillo, 2017. "Vector Games with Potential Function," Games, MDPI, vol. 8(4), pages 1-11, September.
    5. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2017. "Quasiconvexity of set-valued maps assures well-posedness of robust vector optimization," Annals of Operations Research, Springer, vol. 251(1), pages 89-104, April.
    6. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    7. H. Yu & H. M. Liu, 2013. "Robust Multiple Objective Game Theory," Journal of Optimization Theory and Applications, Springer, vol. 159(1), pages 272-280, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. P. Crespi & D. Radi & M. Rocca, 2025. "Insights on the Theory of Robust Games," Computational Economics, Springer;Society for Computational Economics, vol. 65(2), pages 717-761, February.
    2. Guoling Wang & Miao Wang & Hui Yang & Guanghui Yang & Chun Wang, 2024. "Existence of $$\alpha $$ α -Robust Weak Nash Equilibria for Leader–Follower Population Games with Fuzzy Parameters," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2739-2758, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuhn, K. & Raith, A. & Schmidt, M. & Schöbel, A., 2016. "Bi-objective robust optimisation," European Journal of Operational Research, Elsevier, vol. 252(2), pages 418-431.
    2. Jonas Ide & Elisabeth Köbis, 2014. "Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 80(1), pages 99-127, August.
    3. Matteo Rocca, 2025. "Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1671-1686, March.
    4. Jonas Ide & Anita Schöbel, 2016. "Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(1), pages 235-271, January.
    5. Kuntal Som & V. Vetrivel, 2023. "Global well-posedness of set-valued optimization with application to uncertain problems," Journal of Global Optimization, Springer, vol. 85(2), pages 511-539, February.
    6. Kuntal Som & V. Vetrivel, 2021. "On robustness for set-valued optimization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 905-925, April.
    7. Ehrgott, Matthias & Ide, Jonas & Schöbel, Anita, 2014. "Minmax robustness for multi-objective optimization problems," European Journal of Operational Research, Elsevier, vol. 239(1), pages 17-31.
    8. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    9. Christina Büsing & Sigrid Knust & Xuan Thanh Le, 2018. "Trade-off between robustness and cost for a storage loading problem: rule-based scenario generation," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 339-365, December.
    10. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    13. Chuong, T.D. & Jeyakumar, V., 2017. "Convergent hierarchy of SDP relaxations for a class of semi-infinite convex polynomial programs and applications," Applied Mathematics and Computation, Elsevier, vol. 315(C), pages 381-399.
    14. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    15. Chassein, André & Dokka, Trivikram & Goerigk, Marc, 2019. "Algorithms and uncertainty sets for data-driven robust shortest path problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 671-686.
    16. Dranichak, Garrett M. & Wiecek, Margaret M., 2019. "On highly robust efficient solutions to uncertain multiobjective linear programs," European Journal of Operational Research, Elsevier, vol. 273(1), pages 20-30.
    17. M. J. Naderi & M. S. Pishvaee, 2017. "Robust bi-objective macroscopic municipal water supply network redesign and rehabilitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2689-2711, July.
    18. Evers, L. & Dollevoet, T.A.B. & Barros, A.I. & Monsuur, H., 2011. "Robust UAV Mission Planning," Econometric Institute Research Papers EI 2011-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Vaughn Gambeta & Roy Kwon, 2020. "Risk Return Trade-Off in Relaxed Risk Parity Portfolio Optimization," JRFM, MDPI, vol. 13(10), pages 1-28, October.
    20. Wang, Chong & Wang, Qi & Xiang, Xi & Zhang, Canrong & Miao, Lixin, 2025. "Optimizing integrated berth allocation and quay crane assignment: A distributionally robust approach," European Journal of Operational Research, Elsevier, vol. 320(3), pages 593-615.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:289:y:2020:i:2:d:10.1007_s10479-020-03563-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.