IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v280y2019i1d10.1007_s10479-019-03161-x.html
   My bibliography  Save this article

Fast and accurate computation of the distribution of sums of dependent log-normals

Author

Listed:
  • Zdravko I. Botev

    (The University of New South Wales)

  • Robert Salomone

    (The University of New South Wales
    The University of Queensland)

  • Daniel Mackinlay

    (The University of New South Wales)

Abstract

We present a new Monte Carlo methodology for the accurate estimation of the distribution of the sum of dependent log-normal random variables. The methodology delivers statistically unbiased estimators for three distributional quantities of significant interest in finance and risk management: the left tail, or cumulative distribution function; the probability density function; and the right tail, or complementary distribution function of the sum of dependent log-normal factors. For the right tail our methodology delivers a fast and accurate estimator in settings for which existing methodology delivers estimators with large variance that tend to underestimate the true quantity of interest. We provide insight into the computational challenges using theory and numerical experiments, and explain their much wider implications for Monte Carlo statistical estimators of rare-event probabilities. In particular, we find that theoretically strongly efficient estimators should be used with great caution in practice, because they may yield inaccurate results in the prelimit. Further, this inaccuracy may not be detectable from the output of the Monte Carlo simulation, because the simulation output may severely underestimate the true variance of the estimator.

Suggested Citation

  • Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
  • Handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-019-03161-x
    DOI: 10.1007/s10479-019-03161-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03161-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03161-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Yann Robert & Quang Huy Nguyen, 2014. "New efficient estimators in rare event simulation with heavy tails," Post-Print hal-02006632, HAL.
    2. Asmussen, Søren, 2018. "Conditional Monte Carlo for sums, with applications to insurance and finance," Annals of Actuarial Science, Cambridge University Press, vol. 12(2), pages 455-478, September.
    3. Dominik Kortschak & Enkelejd Hashorva, 2014. "Second Order Asymptotics of Aggregated Log-Elliptical Risk," Methodology and Computing in Applied Probability, Springer, vol. 16(4), pages 969-985, December.
    4. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    5. Paul Embrechts & Giovanni Puccetti & Ludger Rüschendorf & Ruodu Wang & Antonela Beleraj, 2014. "An Academic Response to Basel 3.5," Risks, MDPI, vol. 2(1), pages 1-24, February.
    6. Enkelejd Hashorva & Jürg Hüsler, 2003. "On multivariate Gaussian tails," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(3), pages 507-522, September.
    7. Søren Asmussen & Jens Ledet Jensen & Leonardo Rojas-Nandayapa, 2016. "Exponential Family Techniques for the Lognormal Left Tail," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 774-787, September.
    8. Moshe Arye Milevsky & Steven E. Posner, 1999. "Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution," World Scientific Book Chapters, in: Marco Avellaneda (ed.), Quantitative Analysis In Financial Markets Collected Papers of the New York University Mathematical Finance Seminar, chapter 7, pages 203-218, World Scientific Publishing Co. Pte. Ltd..
    9. Asmussen, Søren & Rojas-Nandayapa, Leonardo, 2008. "Asymptotics of sums of lognormal random variables with Gaussian copula," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2709-2714, November.
    10. Søren Asmussen & José Blanchet & Sandeep Juneja & Leonardo Rojas-Nandayapa, 2011. "Efficient simulation of tail probabilities of sums of correlated lognormals," Annals of Operations Research, Springer, vol. 189(1), pages 5-23, September.
    11. Christian Doerr & Norbert Blenn & Piet Van Mieghem, 2013. "Lognormal Infection Times of Online Information Spread," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-6, May.
    12. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    13. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 297-318, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boyle, Phelim & Jiang, Ruihong, 2023. "A note on portfolios of averages of lognormal variables," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 97-109.
    2. Kemal Dinçer Dingeç & Wolfgang Hörmann, 2022. "Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2093-2121, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    2. Søren Asmussen & Jens Ledet Jensen & Leonardo Rojas-Nandayapa, 2016. "Exponential Family Techniques for the Lognormal Left Tail," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 774-787, September.
    3. Kemal Dinçer Dingeç & Wolfgang Hörmann, 2022. "Efficient Algorithms for Tail Probabilities of Exchangeable Lognormal Sums," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 2093-2121, September.
    4. Alouini Mohamed-Slim & Ben Rached Nadhir & Kammoun Abla & Tempone Raul, 2018. "On the efficient simulation of the left-tail of the sum of correlated log-normal variates," Monte Carlo Methods and Applications, De Gruyter, vol. 24(2), pages 101-115, June.
    5. Dan Pirjol & Lingjiong Zhu, 2016. "Discrete Sums of Geometric Brownian Motions, Annuities and Asian Options," Papers 1609.07558, arXiv.org.
    6. Boyle, Phelim & Jiang, Ruihong, 2023. "A note on portfolios of averages of lognormal variables," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 97-109.
    7. Peter Tankov, 2014. "Tails of weakly dependent random vectors," Papers 1402.4683, arXiv.org, revised Jan 2016.
    8. Pirjol, Dan & Zhu, Lingjiong, 2016. "Discrete sums of geometric Brownian motions, annuities and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 19-37.
    9. Archil Gulisashvili & Peter Tankov, 2014. "Implied volatility of basket options at extreme strikes," Papers 1406.0394, arXiv.org.
    10. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    12. Hofert Marius & Memartoluie Amir & Saunders David & Wirjanto Tony, 2017. "Improved algorithms for computing worst Value-at-Risk," Statistics & Risk Modeling, De Gruyter, vol. 34(1-2), pages 13-31, June.
    13. Hirbod Assa & Liyuan Lin & Ruodu Wang, 2022. "Calibrating distribution models from PELVE," Papers 2204.08882, arXiv.org, revised Jun 2023.
    14. Bellini, Fabio & Fadina, Tolulope & Wang, Ruodu & Wei, Yunran, 2022. "Parametric measures of variability induced by risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 270-284.
    15. Xia Han & Liyuan Lin & Ruodu Wang, 2023. "Diversification quotients based on VaR and ES," Papers 2301.03517, arXiv.org, revised May 2023.
    16. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    17. Han, Xia & Lin, Liyuan & Wang, Ruodu, 2023. "Diversification quotients based on VaR and ES," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 185-197.
    18. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    19. Jose Blanchet & Henry Lam & Yang Liu & Ruodu Wang, 2020. "Convolution Bounds on Quantile Aggregation," Papers 2007.09320, arXiv.org, revised Sep 2024.
    20. Ruodu Wang & Ricardas Zitikis, 2018. "Weak comonotonicity," Papers 1812.04827, arXiv.org, revised Sep 2019.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:280:y:2019:i:1:d:10.1007_s10479-019-03161-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.