IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v210y2013i1p309-33110.1007-s10479-011-0891-6.html
   My bibliography  Save this article

Estimating the parameters of a fatigue model using Benders’ decomposition

Author

Listed:
  • Enrique Castillo
  • Roberto Mínguez
  • Antonio Conejo
  • Beatriz Pérez
  • Oscar Fontenla

Abstract

This paper shows how Benders decomposition can be used for estimating the parameters of a fatigue model. The objective function of such model depends on five parameters of different nature. This makes the parameter estimation problem of the fatigue model suitable for the Benders decomposition, which allows us to use well-behaved and robust parameter estimation methods for the different subproblems. To build the Benders cuts, explicit formulas for the sensitivities (partial derivatives) are obtained. This permits building the classical iterative method, in which upper and lower bounds of the optimal value of the objective function are obtained until convergence. Two alternative objective functions to be optimized are the likelihood and the sum of squares error functions, which relate to the maximum likelihood and the minimum error principles, respectively. The method is illustrated by its application to a real-world problem. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Enrique Castillo & Roberto Mínguez & Antonio Conejo & Beatriz Pérez & Oscar Fontenla, 2013. "Estimating the parameters of a fatigue model using Benders’ decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 309-331, November.
  • Handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:309-331:10.1007/s10479-011-0891-6
    DOI: 10.1007/s10479-011-0891-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0891-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0891-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean-François Cordeau & Federico Pasin & Marius Solomon, 2006. "An integrated model for logistics network design," Annals of Operations Research, Springer, vol. 144(1), pages 59-82, April.
    2. E. Castillo & A. J. Conejo & C. Castillo & R. Mínguez & D. Ortigosa, 2006. "Perturbation Approach to Sensitivity Analysis in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 49-74, January.
    3. A. M. Geoffrion & G. W. Graves, 1974. "Multicommodity Distribution System Design by Benders Decomposition," Management Science, INFORMS, vol. 20(5), pages 822-844, January.
    4. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2001. "Simultaneous Assignment of Locomotives and Cars to Passenger Trains," Operations Research, INFORMS, vol. 49(4), pages 531-548, August.
    5. E. Castillo & A. Conejo & C. Castillo & R. Mínguez, 2007. "Closed formulas in local sensitivity analysis for some classes of linear and non-linear problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 355-371, December.
    6. Jean-François Cordeau & François Soumis & Jacques Desrosiers, 2000. "A Benders Decomposition Approach for the Locomotive and Car Assignment Problem," Transportation Science, INFORMS, vol. 34(2), pages 133-149, May.
    7. Ximing Cai & Daene C. McKinney & Leon S. Lasdon & David W. Watkins, 2001. "Solving Large Nonconvex Water Resources Management Models Using Generalized Benders Decomposition," Operations Research, INFORMS, vol. 49(2), pages 235-245, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Mínguez & Antonio Conejo & Enrique Castillo, 2013. "Optimal engineering design via Benders’ decomposition," Annals of Operations Research, Springer, vol. 210(1), pages 273-293, November.
    2. Ricardo Saraiva de Camargo & Gilberto de Miranda & Henrique Pacca L. Luna, 2009. "Benders Decomposition for Hub Location Problems with Economies of Scale," Transportation Science, INFORMS, vol. 43(1), pages 86-97, February.
    3. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    4. Morton O’Kelly & Henrique Luna & Ricardo Camargo & Gilberto Miranda, 2015. "Hub Location Problems with Price Sensitive Demands," Networks and Spatial Economics, Springer, vol. 15(4), pages 917-945, December.
    5. Salman Khodayifar & Mohammad A. Raayatpanah & Abbas Rabiee & Hamed Rahimian & Panos M. Pardalos, 2018. "Optimal Long-Term Distributed Generation Planning and Reconfiguration of Distribution Systems: An Accelerating Benders’ Decomposition Approach," Journal of Optimization Theory and Applications, Springer, vol. 179(1), pages 283-310, October.
    6. Zetina, Carlos Armando & Contreras, Ivan & Fernández, Elena & Luna-Mota, Carlos, 2019. "Solving the optimum communication spanning tree problem," European Journal of Operational Research, Elsevier, vol. 273(1), pages 108-117.
    7. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    8. Gendreau, Michel & Nossack, Jenny & Pesch, Erwin, 2015. "Mathematical formulations for a 1-full-truckload pickup-and-delivery problem," European Journal of Operational Research, Elsevier, vol. 242(3), pages 1008-1016.
    9. Osman, Hany & Demirli, Kudret, 2010. "A bilinear goal programming model and a modified Benders decomposition algorithm for supply chain reconfiguration and supplier selection," International Journal of Production Economics, Elsevier, vol. 124(1), pages 97-105, March.
    10. Canca, David & Barrena, Eva, 2018. "The integrated rolling stock circulation and depot location problem in railway rapid transit systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 115-138.
    11. Roni, Md.S. & Eksioglu, Sandra D. & Searcy, Erin & Jha, Krishna, 2014. "A supply chain network design model for biomass co-firing in coal-fired power plants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 115-134.
    12. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    13. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    14. Georgios Saharidis & Marianthi Ierapetritou, 2013. "Speed-up Benders decomposition using maximum density cut (MDC) generation," Annals of Operations Research, Springer, vol. 210(1), pages 101-123, November.
    15. Dennis Huisman & Leo G. Kroon & Ramon M. Lentink & Michiel J. C. M. Vromans, 2005. "Operations Research in passenger railway transportation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(4), pages 467-497, November.
    16. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.
    17. Fausto Errico & Teodor Gabriel Crainic & Federico Malucelli & Maddalena Nonato, 2017. "A Benders Decomposition Approach for the Symmetric TSP with Generalized Latency Arising in the Design of Semiflexible Transit Systems," Transportation Science, INFORMS, vol. 51(2), pages 706-722, May.
    18. Lin, Zhiyuan & Kwan, Raymond S.K., 2016. "A branch-and-price approach for solving the train unit scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 97-120.
    19. Blossey, Gregor & Hahn, Gerd J. & Koberstein, Achim, 2022. "Planning pharmaceutical manufacturing networks in the light of uncertain production approval times," International Journal of Production Economics, Elsevier, vol. 244(C).
    20. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2011. "Benders Decomposition for Large-Scale Uncapacitated Hub Location," Operations Research, INFORMS, vol. 59(6), pages 1477-1490, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:210:y:2013:i:1:p:309-331:10.1007/s10479-011-0891-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.