IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v200y2012i1p223-24610.1007-s10479-011-0976-2.html
   My bibliography  Save this article

Real time estimation of stochastic volatility processes

Author

Listed:
  • László Gerencsér
  • Zsanett Orlovits

Abstract

Autoregressive conditional heteroscedastic (ARCH) processes and their extensions known as generalized ARCH (GARCH) processes are widely accepted for modelling financial time series, in particular stochastic volatility processes. The off-line estimation of ARCH and GARCH processes have been analyzed under a variety of conditions in the literature. The main contribution of this paper is a rigorous convergence analysis of a recursive estimation method for GARCH processes with restricted stability margin under reasonable technical conditions. The main tool in the convergence analysis is an appropriate modification of the theory of recursive estimation within a Markovian framework developed in Benveniste et al. (Adaptive Algorithms and Stochastic Approximations. Springer, Berlin, 1990 ). The basic elements of this theory will also be summarized. The viability of the method will be demonstrated by experimental results both for simulated and real data. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • László Gerencsér & Zsanett Orlovits, 2012. "Real time estimation of stochastic volatility processes," Annals of Operations Research, Springer, vol. 200(1), pages 223-246, November.
  • Handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:223-246:10.1007/s10479-011-0976-2
    DOI: 10.1007/s10479-011-0976-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-011-0976-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-011-0976-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    2. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    4. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(1), pages 29-52, March.
    5. Lumsdaine, Robin L, 1996. "Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models," Econometrica, Econometric Society, vol. 64(3), pages 575-596, May.
    6. Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
    7. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 153-173, Suppl. De.
    8. Paul D. Feigin & Richard L. Tweedie, 1985. "Random Coefficient Autoregressive Processes:A Markov Chain Analysis Of Stationarity And Finiteness Of Moments," Journal of Time Series Analysis, Wiley Blackwell, vol. 6(1), pages 1-14, January.
    9. Thomas Mikosch & Catalin Starica, 2004. "Changes of structure in financial time series and the GARCH model," Econometrics 0412003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bal'azs Csan'ad Cs'aji, 2018. "Score Permutation Based Finite Sample Inference for Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) Models," Papers 1807.08390, arXiv.org.
    2. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    2. Mikosch, Thomas & Straumann, Daniel, 0. "Whittle estimation in a heavy-tailed GARCH(1,1) model," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 187-222, July.
    3. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    5. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    6. W. K. Li & Shiqing Ling & Michael McAleer, 2001. "A Survey of Recent Theoretical Results for Time Series Models with GARCH Errors," ISER Discussion Paper 0545, Institute of Social and Economic Research, Osaka University.
    7. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.
    8. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    9. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    10. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    11. Gonzalez-Rivera, Gloria & Drost, Feike C., 1999. "Efficiency comparisons of maximum-likelihood-based estimators in GARCH models," Journal of Econometrics, Elsevier, vol. 93(1), pages 93-111, November.
    12. Demos, Antonis & Sentana, Enrique, 1998. "Testing for GARCH effects: a one-sided approach," Journal of Econometrics, Elsevier, vol. 86(1), pages 97-127, June.
    13. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    14. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    15. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    16. Blasques, Francisco & Ji, Jiangyu & Lucas, André, 2016. "Semiparametric score driven volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 58-69.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    18. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    19. Antonis Demos & Dimitra Kyriakopoulou, 2011. "Bias Correction of ML and QML Estimators in the EGARCH(1,1) Model," DEOS Working Papers 1108, Athens University of Economics and Business.
    20. Ip, W.C. & Wong, Heung & Pan, J.Z. & Li, D.F., 2006. "The asymptotic convexity of the negative likelihood function of GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 311-331, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:200:y:2012:i:1:p:223-246:10.1007/s10479-011-0976-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.