IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v160y2008i1p69-8210.1007-s10479-007-0297-7.html
   My bibliography  Save this article

Second order fluid models with general boundary behaviour

Author

Listed:
  • M. Gribaudo
  • D. Manini
  • B. Sericola
  • M. Telek

Abstract

A crucial property of second order fluid models is the behaviour of the fluid level at the boundaries. Two cases have been considered: the reflecting and the absorbing boundary. This paper presents an approach for the stationary analysis of second order fluid models with any combination of boundary behaviours. The proposed approach is based on the solution of a linear system whose coefficients are obtained from a matrix exponent. A practical example demonstrates the suitability of the technique in performance modeling. Copyright Springer Science+Business Media, LLC 2008

Suggested Citation

  • M. Gribaudo & D. Manini & B. Sericola & M. Telek, 2008. "Second order fluid models with general boundary behaviour," Annals of Operations Research, Springer, vol. 160(1), pages 69-82, April.
  • Handle: RePEc:spr:annopr:v:160:y:2008:i:1:p:69-82:10.1007/s10479-007-0297-7
    DOI: 10.1007/s10479-007-0297-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0297-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0297-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horton, Graham & Kulkarni, Vidyadhar G. & Nicol, David M. & Trivedi, Kishor S., 1998. "Fluid stochastic Petri nets: Theory, applications, and solution techniques," European Journal of Operational Research, Elsevier, vol. 105(1), pages 184-201, February.
    2. Rajeeva L. Karandikar & Vidyadhar G. Kulkarni, 1995. "Second-Order Fluid Flow Models: Reflected Brownian Motion in a Random Environment," Operations Research, INFORMS, vol. 43(1), pages 77-88, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gábor Horváth & Miklós Telek, 2017. "Matrix-analytic solution of infinite, finite and level-dependent second-order fluid models," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 325-343, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anton Stefanek & Richard A. Hayden & Jeremy T. Bradley, 2016. "Mean-field analysis of hybrid Markov population models with time-inhomogeneous rates," Annals of Operations Research, Springer, vol. 239(2), pages 667-693, April.
    2. Jianing Wu & Shaoze Yan & RX Gao, 2014. "Modeling and analysis of failure propagation of mechanical system with multi-operation states using high-level Petri net," Journal of Risk and Reliability, , vol. 228(4), pages 347-361, August.
    3. Nigel Bean & Angus Lewis & Giang T. Nguyen & Małgorzata M. O’Reilly & Vikram Sunkara, 2022. "A Discontinuous Galerkin Method for Approximating the Stationary Distribution of Stochastic Fluid-Fluid Processes," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2823-2864, December.
    4. Gábor Horváth & Miklós Telek, 2017. "Matrix-analytic solution of infinite, finite and level-dependent second-order fluid models," Queueing Systems: Theory and Applications, Springer, vol. 87(3), pages 325-343, December.
    5. Bean, Nigel G. & Nguyen, Giang T. & Nielsen, Bo F. & Peralta, Oscar, 2022. "RAP-modulated fluid processes: First passages and the stationary distribution," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 308-340.
    6. Nicole Bäuerle, 1998. "The advantage of small machines in a stochastic fluid production process," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 47(1), pages 83-97, February.
    7. Jianing Wu & Shaoze Yan, 2014. "An approach to system reliability prediction for mechanical equipment using fuzzy reasoning Petri net," Journal of Risk and Reliability, , vol. 228(1), pages 39-51, February.
    8. Berkelmans, Wouter & Cichocka, Agata & Mandjes, Michel, 2020. "The correlation function of a queue with Lévy and Markov additive input," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1713-1734.
    9. Horton, Graham & Kulkarni, Vidyadhar G. & Nicol, David M. & Trivedi, Kishor S., 1998. "Fluid stochastic Petri nets: Theory, applications, and solution techniques," European Journal of Operational Research, Elsevier, vol. 105(1), pages 184-201, February.
    10. Ivanovs, Jevgenijs & Boxma, Onno & Mandjes, Michel, 2010. "Singularities of the matrix exponent of a Markov additive process with one-sided jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1776-1794, August.
    11. Samuelson, Aviva & Haigh, Andrew & O'Reilly, Małgorzata M. & Bean, Nigel G., 2017. "Stochastic model for maintenance in continuously deteriorating systems," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1169-1179.
    12. Macchi, Marco & Kristjanpoller, Fredy & Garetti, Marco & Arata, Adolfo & Fumagalli, Luca, 2012. "Introducing buffer inventories in the RBD analysis of process production systems," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 84-95.
    13. Guy Latouche & Matthieu Simon, 2018. "Markov-Modulated Brownian Motion with Temporary Change of Regime at Level Zero," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1199-1222, December.
    14. Nail Akar & Omer Gursoy & Gabor Horvath & Miklos Telek, 2021. "Transient and First Passage Time Distributions of First- and Second-order Multi-regime Markov Fluid Queues via ME-fication," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1257-1283, December.
    15. Marco Gribaudo & Illés Horváth & Daniele Manini & Miklós Telek, 2020. "Modelling large timescale and small timescale service variability," Annals of Operations Research, Springer, vol. 293(1), pages 123-140, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:160:y:2008:i:1:p:69-82:10.1007/s10479-007-0297-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.