IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v155y2007i1p207-22510.1007-s10479-007-0218-9.html
   My bibliography  Save this article

Towards constraint-based school timetabling

Author

Listed:
  • Michael Marte

Abstract

This paper takes three important steps towards constraint-based school timetabling: (i) It proposes a constraint model that covers many important requirements of school timetables by means of global constraints. (ii) It proposes a corresponding problem solver that learns from its earlier faults and restarts to escape non-promising parts of the search space. (iii) By reporting a large-scale computational study, it delivers a proof of concept. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Michael Marte, 2007. "Towards constraint-based school timetabling," Annals of Operations Research, Springer, vol. 155(1), pages 207-225, November.
  • Handle: RePEc:spr:annopr:v:155:y:2007:i:1:p:207-225:10.1007/s10479-007-0218-9
    DOI: 10.1007/s10479-007-0218-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-007-0218-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-007-0218-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drexl, Andreas & Salewski, Frank, 1997. "Distribution requirements and compactness constraints in school timetabling," European Journal of Operational Research, Elsevier, vol. 102(1), pages 193-214, October.
    2. Costa, Daniel, 1994. "A tabu search algorithm for computing an operational timetable," European Journal of Operational Research, Elsevier, vol. 76(1), pages 98-110, July.
    3. Werner Junginger, 1986. "Timetabling in Germany---A Survey," Interfaces, INFORMS, vol. 16(4), pages 66-74, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed Kheiri & Ender Özcan & Andrew J. Parkes, 2016. "A stochastic local search algorithm with adaptive acceptance for high-school timetabling," Annals of Operations Research, Springer, vol. 239(1), pages 135-151, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Caramia & Stefano Giordani, 2020. "Curriculum-Based Course Timetabling with Student Flow, Soft Constraints, and Smoothing Objectives: an Application to a Real Case Study," SN Operations Research Forum, Springer, vol. 1(2), pages 1-21, June.
    2. Daskalaki, S. & Birbas, T., 2005. "Efficient solutions for a university timetabling problem through integer programming," European Journal of Operational Research, Elsevier, vol. 160(1), pages 106-120, January.
    3. Nelishia Pillay, 2014. "A survey of school timetabling research," Annals of Operations Research, Springer, vol. 218(1), pages 261-293, July.
    4. Haroldo Santos & Eduardo Uchoa & Luiz Ochi & Nelson Maculan, 2012. "Strong bounds with cut and column generation for class-teacher timetabling," Annals of Operations Research, Springer, vol. 194(1), pages 399-412, April.
    5. Drexl, Andreas & Salewski, Frank, 1997. "Distribution requirements and compactness constraints in school timetabling," European Journal of Operational Research, Elsevier, vol. 102(1), pages 193-214, October.
    6. Pongcharoen, P. & Promtet, W. & Yenradee, P. & Hicks, C., 2008. "Stochastic Optimisation Timetabling Tool for university course scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 903-918, April.
    7. Daskalaki, S. & Birbas, T. & Housos, E., 2004. "An integer programming formulation for a case study in university timetabling," European Journal of Operational Research, Elsevier, vol. 153(1), pages 117-135, February.
    8. Schirmer, Andreas & Potzhar, Kathrin, 2001. "Professional course scheduling in airline transport pilot training: A case from Lufthansa flight training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 539, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    9. R. Alan Bowman, 2021. "Developing Optimal Student Plans of Study," Interfaces, INFORMS, vol. 51(6), pages 409-421, November.
    10. Drexl, Andreas & Nissen, Rudiger & Patterson, James H. & Salewski, Frank, 2000. "ProGen/[pi]x - An instance generator for resource-constrained project scheduling problems with partially renewable resources and further extensions," European Journal of Operational Research, Elsevier, vol. 125(1), pages 59-72, August.
    11. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    12. De Causmaecker, Patrick & Demeester, Peter & Vanden Berghe, Greet, 2009. "A decomposed metaheuristic approach for a real-world university timetabling problem," European Journal of Operational Research, Elsevier, vol. 195(1), pages 307-318, May.
    13. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "The course scheduling problem at Lufthansa Technical Training," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 441, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Kai Watermeyer & Jürgen Zimmermann, 2022. "A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 575-602, June.
    15. Kai Watermeyer & Jürgen Zimmermann, 2020. "A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 427-460, June.
    16. Haase, Knut & Latteier, Jörg & Schirmer, Andreas, 1997. "Course planning at Lufthansa technical training: Constructing more profitable schedules," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 442, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Clarence H. Martin, 2004. "Ohio University's College of Business Uses Integer Programming to Schedule Classes," Interfaces, INFORMS, vol. 34(6), pages 460-465, December.
    18. Knut Haase & Jörg Latteier & Andreas Schirmer, 1999. "Course Planning at Lufthansa Technical Training: Constructing More Profitable Schedules," Interfaces, INFORMS, vol. 29(5), pages 95-109, October.
    19. Cangalovic, Mirjana & Kovacevic-Vujcic, Vera & Ivanovic, Lav & Drazic, Milan, 1998. "Modeling and solving a real-life assignment problem at universities," European Journal of Operational Research, Elsevier, vol. 110(2), pages 223-233, October.
    20. Dimopoulou, M. & Miliotis, P., 2001. "Implementation of a university course and examination timetabling system," European Journal of Operational Research, Elsevier, vol. 130(1), pages 202-213, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:155:y:2007:i:1:p:207-225:10.1007/s10479-007-0218-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.